Charge form factors of nuclei in the alpha cluster model

1978 ◽  
Vol 116 (2) ◽  
pp. 419
1979 ◽  
Vol 118 (2) ◽  
pp. 307-340 ◽  
Author(s):  
E.V. Inopin ◽  
V.S. Kinchakov ◽  
V.K. Lukyanov ◽  
Yu.S. Pol'

2002 ◽  
Vol 11 (05) ◽  
pp. 359-367 ◽  
Author(s):  
K. A. GRIDNEV ◽  
M. P. KARTAMYSHEV ◽  
J. S. VAAGEN ◽  
V. K. LUKYANOV ◽  
G. S. ANAGNOSTATOS

In the framework of the Alpha Cluster Model extended calculations of form factors of elastic and inelastic [Formula: see text] and [Formula: see text] (7.66 MeV) electron scattering on 12C were performed. Two possible alpha cluster configurations (linear and triangular) were considered for states assigned to different rotational bands and although the configuration mixture was found to be important for explanation of the inelastic monopole form factor, a fully consistent picture, including all available data, was not obtained.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950015
Author(s):  
Xiaoyong Guo ◽  
Zaijun Wang ◽  
Tianjing Li ◽  
Jian Liu

We construct a scheme to calculate the charge form factors for the elastic electron scattering. Our calculation is based on the relativistic eikonal approximation and the Skyrme–Hartree–Fock equation. To perform our calculation and benchmark the results, eight model nuclei with available experimental data: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are considered. For the comparison, the charge form factors calculated by the relativistic mean-field (RMF) model are also provided. Parameter set SLy5 is utilized for the Skyrme force, and the set NL3 is applied for the RMF model. It has been confirmed that combining of a nonrelativistic treatment for the target nucleus with a relativistic treatment for the incident electron may work better to reach highly descriptive and predictive results similar to the pure relativistic treatment. The results of this work are also useful for future experiments to test different inputs of densities for a specific nucleus.


1978 ◽  
Vol 17 (3) ◽  
pp. 874-878 ◽  
Author(s):  
C. Y. Hu ◽  
S. A. Moszkowski ◽  
D. L. Shannon

2008 ◽  
Vol 17 (10) ◽  
pp. 2150-2154 ◽  
Author(s):  
S. YU. TORILOV ◽  
K. A. GRIDNEV ◽  
W. GREINER

The simple alpha-cluster model was used for the consideration of the chain states and Bose-Einstein condensation in the light self-conjugated nuclei. Obtained results were compared with predictions of the shell-model for the deformed nuclei, with calculations based on Gross-Pitaevskii equation and with recent experimental results.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
S Ohkubo ◽  
J Takahashi ◽  
Y Yamanaka

Abstract For more than half a century, the structure of $^{12}$C, such as the ground band, has been understood to be well described by the three $\alpha$ cluster model based on a geometrical crystalline picture. On the contrary, recently it has been claimed that the ground state of $^{12}$C is also well described by a nonlocalized cluster model without any of the geometrical configurations originally proposed to explain the dilute gas-like Hoyle state, which is now considered to be a Bose–Einstein condensate of $\alpha$ clusters. The challenging unsolved problem is how we can reconcile the two exclusive $\alpha$ cluster pictures of $^{12}$C, crystalline vs. nonlocalized structure. We show that the crystalline cluster picture and the nonlocalized cluster picture can be reconciled by noticing that they are a manifestation of supersolidity with properties of both crystallinity and superfluidity. This is achieved through a superfluid $\alpha$ cluster model based on effective field theory, which treats the Nambu–Goldstone zero mode rigorously. For several decades, scientists have been searching for a supersolid in nature. Nuclear $\alpha$ cluster structure is considered to be the first confirmed example of a stable supersolid.


Sign in / Sign up

Export Citation Format

Share Document