angular momentum projection
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 4)

H-INDEX

21
(FIVE YEARS 0)

Author(s):  
Kun Wang ◽  
Bingnan Lu

Abstract The nuclear deformations are of fundamental importance in nuclear physics. Recently we developed a multi-dimensionally constrained relativistic Hartree-Bogoliubov (MDCRHB) model, in which all multipole deformations respecting the $V_4$ symmetry can be considered self-consistently. In this work we extend this model by incorporating the angular momentum projection (AMP) and parity projection (PP) to restore the rotational and parity symmetries broken in the mean-field level. This projected-MDCRHB (p-MDCRHB) model enables us to connect certain nuclear spectra to exotic intrinsic shapes such as triangle or tetrahedron. We present the details of the method and an exemplary calculation for $^{12}$C. We develop a triangular moment constraint to generate the triangular configurations consisting of three $\alpha$ clusters arranged as an equilateral triangle. The resulting $^{12}$C spectra are consistent with that from a triangular rigid rotor for large separations between the $\alpha$ clusters. We also calculate the $B(E2)$ and $B(E3)$ values for low-lying states and find good agreement with the experiments.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1435
Author(s):  
Victor G. Yarzhemsky

Sr2RuO4 and Fe-pnictide superconductors belong to the same point group symmetry D4h. Many experimental data confirm odd pairs in Sr2RuO4 and even pairs in Fe-pnictides, but opposite conclusions also exist. Recent NMR results of Pustogow et al., which revealed even Cooper pairs in Sr2RuO4, require reconsideration of symmetry treatment of its SOP (superconducting order parameter). In the present work making use of the Mackey–Bradley theorem on symmetrized squares, a group theoretical investigation of possible pairing states in D4h symmetry is performed. It is obtained for I4/mmm , i.e., space group of Sr2RuO4, that triplet pairs with even spatial parts are possible in kz direction and in points M and Y. For the two latter cases pairing of equivalent electrons with nonzero total momentum is proposed. In P4/nmm space group of Fe- pnictides in point M, even and odd pairs are possible for singlet and triplet cases. It it shown that even and odd chiral states with angular momentum projection m=±1 have nodes in vertical planes, but Eg is nodal , whereas Eu is nodeless in the basal plane. It is also shown that the widely accepted assertion that the parity of angular momentum value is directly connected with the spatial parity of a pair is not valid in a space-group approach to the wavefunction of a Cooper pair.


2018 ◽  
Vol 178 ◽  
pp. 02002 ◽  
Author(s):  
J. Luis Egido ◽  
Marta Borrajo

The pairing correlations in odd-A nuclei are analyzed in the mean field approximation and beyond. In particular the role of symmetry conservation is investigated. We find that particle number projection after the variation (PN-PAV) has little effect on the pairing correlations specially in the weak pairing regime. This is in contrast to the variation after particle number projection (PN-VAP) approach where a strong effect is found. The situation is specially critical in odd nuclei because the pairing correlations vanish due to the blocking effect and the Hartree-Fock-Bogoliubov wave function collapses to the Hartree-Fock one. The PN-VAP, however, handles perfectly the exact blocking providing highly correlated wave functions. The role of the angular momentum projection is studied only in the PAV approach. We find small changes of the pairing correlation, at least at small angular momentum. In the calculations we use the Gogny interaction well suited to this kind of studies.


2018 ◽  
Vol 60 (8) ◽  
pp. 1499
Author(s):  
А.А. Головатенко ◽  
М.А. Семина ◽  
А.В. Родина ◽  
Т.В. Шубина

AbstractIn the limit of strong quantum confinement the lower energy states of excitons and biexcitons in spheroidal quantum dots of semiconductors with a fourfold degenerate vertex of the valence band, which are active in the dipole approximation at one- and two-photon excitation, have been considered. The comparative analysis of the order of energy levels of the hole in the potentials of the infinitely deep quantum well and a three-dimensional harmonic oscillator taking into account the axial anisotropy of the quantum dot (QD) shape is carried out. It is shown that the anisotropy of the QD shape can lead to the opposite sign of splitting with respect to angular momentum projection ±3/2, ±1/2 for spatially odd (1 P _3/2) and even (1 S _3/2) levels of the hole. At the same time, in the case of the potential of an infinitely deep quantum well, an inversion of the order of 1 S _3/2 and 1 P _3/2 levels can be observed at values of the ratio of the effective masses of the light and heavy holes β = m _lh/ m _hh ≈ 0.14. The type of the trial wave functions of the hole for the state 1 P _3/2 in the potential of an isotropic three-dimensional harmonic oscillator depending on β is proposed. The dependence of the binding energy of excitons in the considered potentials on β is presented and the possibility of formation of various biexcitonic states is considered.


Sign in / Sign up

Export Citation Format

Share Document