Isolation and characterisation of the different B800–850 light-harvesting complexes from low- and high-light grown cells of Rhodopseudomonas palustris, strain 2.1.6

1990 ◽  
Vol 1016 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Mark B. Evans ◽  
Anna M. Hawthornthwaite ◽  
Richard J. Cogdell
mSystems ◽  
2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Kathryn R. Fixen ◽  
Yasuhiro Oda ◽  
Caroline S. Harwood

ABSTRACT Rhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications. Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacterium Rhodopseudomonas palustris produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiple pucBA operons that encode the α and β peptides that make up these complexes. However, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of different pucBA operons to the composition and function of different LH complexes. It was also unclear how much diversity of LH complexes exists in R. palustris and affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in their pucBA gene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of the pucBA operons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression in Rhodopseudomonas strains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. IMPORTANCE Rhodopseudomonas palustris is a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes. Rhodopseudomonas strains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the species Rhodopseudomonas palustris. The data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.


2009 ◽  
Vol 97 (11) ◽  
pp. 3019-3028 ◽  
Author(s):  
Vladimíra Moulisová ◽  
Larry Luer ◽  
Sajjad Hoseinkhani ◽  
Tatas H.P. Brotosudarmo ◽  
Aaron M. Collins ◽  
...  

2011 ◽  
Vol 440 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Tatas H. P. Brotosudarmo ◽  
Aaron M. Collins ◽  
Andrew Gall ◽  
Aleksander W. Roszak ◽  
Alastair T. Gardiner ◽  
...  

The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.


2014 ◽  
Vol 121 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Masahiko Taniguchi ◽  
Sarah Henry ◽  
Richard J. Cogdell ◽  
Jonathan S. Lindsey

Sign in / Sign up

Export Citation Format

Share Document