fluorescence lifetime
Recently Published Documents


TOTAL DOCUMENTS

3351
(FIVE YEARS 643)

H-INDEX

96
(FIVE YEARS 13)

2022 ◽  
Author(s):  
Evgeny A Shirshin ◽  
Marina V Shirmanova ◽  
Alexey V Gayer ◽  
Maria M Lukina ◽  
Elena E Nikonova ◽  
...  

Molecular, morphological and physiological heterogeneity is the inherent property of cells, which governs differences in their response to external influence. The tumor cells metabolic heterogeneity is of a special interest due to its clinical relevance to the tumor progression and therapeutic outcomes. Rapid, sensitive and non-invasive assessment of metabolic heterogeneity of cells is of a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters (FDPs) of endogenous fluorophores, such as NAD(P)H. To achieve the accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this report, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity has been demonstrated. This has been achieved using a novel approach to data analysis based on the non-parametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations as compare more traditional approaches of FLIM measurements and analysis. The new approach was further validated for imaging cultured cancer cells treated with chemotherapy. Those results pave the way for an accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Nazar Oleksiievets ◽  
Yelena Sargsyan ◽  
Jan Christoph Thiele ◽  
Nikolaos Mougios ◽  
Shama Sograte-Idrissi ◽  
...  

AbstractDNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuan-I Chen ◽  
Yin-Jui Chang ◽  
Shih-Chu Liao ◽  
Trung Duc Nguyen ◽  
Jianchen Yang ◽  
...  

AbstractFluorescence lifetime imaging microscopy (FLIM) is a powerful tool to quantify molecular compositions and study molecular states in complex cellular environment as the lifetime readings are not biased by fluorophore concentration or excitation power. However, the current methods to generate FLIM images are either computationally intensive or unreliable when the number of photons acquired at each pixel is low. Here we introduce a new deep learning-based method termed flimGANE (fluorescence lifetime imaging based on Generative Adversarial Network Estimation) that can rapidly generate accurate and high-quality FLIM images even in the photon-starved conditions. We demonstrated our model is up to 2,800 times faster than the gold standard time-domain maximum likelihood estimation (TD_MLE) and that flimGANE provides a more accurate analysis of low-photon-count histograms in barcode identification, cellular structure visualization, Förster resonance energy transfer characterization, and metabolic state analysis in live cells. With its advantages in speed and reliability, flimGANE is particularly useful in fundamental biological research and clinical applications, where high-speed analysis is critical.


Author(s):  
Peter T. A. Linders ◽  
Melina Ioannidis ◽  
Martin ter Beest ◽  
Geert van den Bogaart

2022 ◽  
Author(s):  
Jie Li ◽  
Xinyi Yang ◽  
Tong Li ◽  
Yan-Qing Ye ◽  
Yayun Zhou ◽  
...  

The non-equivalent doping of Mn4+ in the red-emitting fluoride phosphors effectively shortens the fluorescence lifetime. Herein, we successfully synthesized Rb2NaInF6:Mn4+ phosphors by an ion-exchange method. The compensation mechanism of Mn4+...


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 140
Author(s):  
Ting-Yuan Tseng ◽  
Chiung-Lin Wang ◽  
Wei-Chun Huang ◽  
Ta-Chau Chang

Guanine-rich oligonucleotides (GROs) can self-associate to form G-quadruplex (G4) structures that have been extensively studied in vitro. To translate the G4 study from in vitro to in live cells, here fluorescence lifetime imaging microscopy (FLIM) of an o-BMVC fluorescent probe is applied to detect G4 structures and to study G4 dynamics in CL1-0 live cells. FLIM images of exogenous GROs show that the exogenous parallel G4 structures that are characterized by the o-BMVC decay times (≥2.4 ns) are detected in the lysosomes of live cells in large quantities, but the exogenous nonparallel G4 structures are hardly detected in the cytoplasm of live cells. In addition, similar results are also observed for the incubation of their single-stranded GROs. In the study of G4 formation by ssHT23 and hairpin WT22, the analyzed binary image can be used to detect very small increases in the number of o-BMVC foci (decay time ≥ 2.4 ns) in the cytoplasm of live cells. However, exogenous ssCMA can form parallel G4 structures that are able to be detected in the lysosomes of live CL1-0 cells in large quantities. Moreover, the photon counts of the o-BMVC signals (decay time ≥ 2.4 ns) that are measured in the FLIM images are used to reveal the transition of the G4 formation of ssCMA and to estimate the unfolding rate of CMA G4s with the addition of anti-CMA into live cells for the first time. Hence, FLIM images of o-BMVC fluorescence hold great promise for the study of G4 dynamics in live cells.


2021 ◽  
Author(s):  
Jason T. Smith ◽  
Alena Rudkouskaya ◽  
Shan Gao ◽  
Juhi M. Gupta ◽  
Arin Ulku ◽  
...  

Near-infrared (NIR) fluorescence lifetime imaging (FLI) provides a unique contrast mechanism to monitor biological parameters and molecular events in vivo. Single-photon avalanche photodiode (SPAD) cameras have been recently demonstrated in FLI microscopy (FLIM) applications, but their suitability for in vivo macroscopic FLI (MFLI) in deep tissues remains to be demonstrated. Herein, we report in vivo NIR MFLI measurement with SwissSPAD2, a large time-gated SPAD camera. We first benchmark its performance in well-controlled in vitro experiments, ranging from monitoring environmental effects on fluorescence lifetime, to quantifying Förster Resonant Energy Transfer (FRET) between dyes. Next, we use it for in vivo studies of target-drug engagement in live and intact tumor xenografts using FRET. Information obtained with SwissSPAD2 was successfully compared to that obtained with a gated-ICCD camera, using two different approaches. Our results demonstrate that SPAD cameras offer a powerful technology for in vivo preclinical applications in the NIR window.


Sign in / Sign up

Export Citation Format

Share Document