scholarly journals Low Light Adaptation: Energy Transfer Processes in Different Types of Light Harvesting Complexes from Rhodopseudomonas palustris

2009 ◽  
Vol 97 (11) ◽  
pp. 3019-3028 ◽  
Author(s):  
Vladimíra Moulisová ◽  
Larry Luer ◽  
Sajjad Hoseinkhani ◽  
Tatas H.P. Brotosudarmo ◽  
Aaron M. Collins ◽  
...  
2011 ◽  
Vol 440 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Tatas H. P. Brotosudarmo ◽  
Aaron M. Collins ◽  
Andrew Gall ◽  
Aleksander W. Roszak ◽  
Alastair T. Gardiner ◽  
...  

The differing composition of LH2 (peripheral light-harvesting) complexes present in Rhodopseudomonas palustris 2.1.6 have been investigated when cells are grown under progressively decreasing light intensity. Detailed analysis of their absorption spectra reveals that there must be more than two types of LH2 complexes present. Purified HL (high-light) and LL (low-light) LH2 complexes have mixed apoprotein compositions. The HL complexes contain PucABa and PucABb apoproteins. The LL complexes contain PucABa, PucABd and PucBb-only apoproteins. This mixed apoprotein composition can explain their resonance Raman spectra. Crystallographic studies and molecular sieve chromatography suggest that both the HL and the LL complexes are nonameric. Furthermore, the electron-density maps do not support the existence of an additional Bchl (bacteriochlorophyll) molecule; rather the density is attributed to the N-termini of the α-polypeptide.


FEBS Letters ◽  
1993 ◽  
Vol 329 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Yoshinobu Nishimura ◽  
Keizo Shimada ◽  
Iwao Yamazaki ◽  
Mamoru Mimuro

Science ◽  
2013 ◽  
Vol 340 (6139) ◽  
pp. 1448-1451 ◽  
Author(s):  
R. Hildner ◽  
D. Brinks ◽  
J. B. Nieder ◽  
R. J. Cogdell ◽  
N. F. van Hulst

Science ◽  
2018 ◽  
Vol 360 (6393) ◽  
pp. 1109-1113 ◽  
Author(s):  
Xiaowei Pan ◽  
Jun Ma ◽  
Xiaodong Su ◽  
Peng Cao ◽  
Wenrui Chang ◽  
...  

Plants regulate photosynthetic light harvesting to maintain balanced energy flux into photosystems I and II (PSI and PSII). Under light conditions favoring PSII excitation, the PSII antenna, light-harvesting complex II (LHCII), is phosphorylated and forms a supercomplex with PSI core and the PSI antenna, light-harvesting complex I (LHCI). Both LHCI and LHCII then transfer excitation energy to the PSI core. We report the structure of maize PSI-LHCI-LHCII solved by cryo–electron microscopy, revealing the recognition site between LHCII and PSI. The PSI subunits PsaN and PsaO are observed at the PSI-LHCI interface and the PSI-LHCII interface, respectively. Each subunit relays excitation to PSI core through a pair of chlorophyll molecules, thus revealing previously unseen paths for energy transfer between the antennas and the PSI core.


Sign in / Sign up

Export Citation Format

Share Document