The mechanism of proton and electron transport in mitochondrial complex I

1994 ◽  
Vol 1187 (2) ◽  
pp. 116-120 ◽  
Author(s):  
Mauro Degli Esposti ◽  
Anna Ghelli
1996 ◽  
Vol 313 (1) ◽  
pp. 327-334 ◽  
Author(s):  
Mauro ESPOSTI DEGLI ◽  
Anna NGO ◽  
Gabrielle L. McMULLEN ◽  
Anna GHELLI ◽  
Francesca SPARLA ◽  
...  

We report the first detailed study on the ubiquinone (coenzyme Q; abbreviated to Q) analogue specificity of mitochondrial complex I, NADH:Q reductase, in intact submitochondrial particles. The enzymic function of complex I has been investigated using a series of analogues of Q as electron acceptor substrates for both electron transport activity and the associated generation of membrane potential. Q analogues with a saturated substituent of one to three carbons at position 6 of the 2,3-dimethoxy-5-methyl-1,4-benzoquinone ring have the fastest rates of electron transport activity, and analogues with a substituent of seven to nine carbon atoms have the highest values of association constant derived from NADH:Q reductase activity. The rate of NADH:Q reductase activity is potently but incompletely inhibited by rotenone, and the residual rotenone-insensitive rate is stimulated by Q analogues in different ways depending on the hydrophobicity of their substituent. Membrane potential measurements have been undertaken to evaluate the energetic efficiency of complex I with various Q analogues. Only hydrophobic analogues such as nonyl-Q or undecyl-Q show an efficiency of membrane potential generation equivalent to that of endogenous Q. The less hydrophobic analogues as well as the isoprenoid analogue Q-2 are more efficient as substrates for the redox activity of complex I than for membrane potential generation. Thus the hydrophilic Q analogues act also as electron sinks and interact incompletely with the physiological Q site in complex I that pumps protons and generates membrane potential.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 285 ◽  
Author(s):  
John O. Onukwufor ◽  
Brandon J. Berry ◽  
Andrew P. Wojtovich

Mitochondrial reactive oxygen species (ROS) can be either detrimental or beneficial depending on the amount, duration, and location of their production. Mitochondrial complex I is a component of the electron transport chain and transfers electrons from NADH to ubiquinone. Complex I is also a source of ROS production. Under certain thermodynamic conditions, electron transfer can reverse direction and reduce oxygen at complex I to generate ROS. Conditions that favor this reverse electron transport (RET) include highly reduced ubiquinone pools, high mitochondrial membrane potential, and accumulated metabolic substrates. Historically, complex I RET was associated with pathological conditions, causing oxidative stress. However, recent evidence suggests that ROS generation by complex I RET contributes to signaling events in cells and organisms. Collectively, these studies demonstrate that the impact of complex I RET, either beneficial or detrimental, can be determined by the timing and quantity of ROS production. In this article we review the role of site-specific ROS production at complex I in the contexts of pathology and physiologic signaling.


Sign in / Sign up

Export Citation Format

Share Document