Substrate specificity of fatty-acyl-CoA ligase in liver microsomes

Author(s):  
Noa Noy ◽  
David Zakim
2006 ◽  
Vol 398 (3) ◽  
pp. 531-538 ◽  
Author(s):  
Yukiko Mizutani ◽  
Akio Kihara ◽  
Yasuyuki Igarashi

The LASS (longevity assurance homologue) family members are highly conserved from yeasts to mammals. Five mouse and human LASS family members, namely LASS1, LASS2, LASS4, LASS5 and LASS6, have been identified and characterized. In the present study we cloned two transcriptional variants of hitherto-uncharacterized mouse LASS3 cDNA, which encode a 384-amino-acid protein (LASS3) and a 419-amino-acid protein (LASS3-long). In vivo, [3H]dihydrosphingosine labelling and electrospray-ionization MS revealed that overproduction of either LASS3 isoform results in increases in several ceramide species, with some preference toward those having middle- to long-chain-fatty acyl-CoAs. A similar substrate preference was observed in an in vitro (dihydro)ceramide synthase assay. These results indicate that LASS3 possesses (dihydro)ceramide synthesis activity with relatively broad substrate specificity. We also found that, except for a weak display in skin, LASS3 mRNA expression is limited almost solely to testis, implying that LASS3 plays an important role in this gland.


1995 ◽  
Vol 310 (1) ◽  
pp. 221-224 ◽  
Author(s):  
J F St-Denis ◽  
B Annabi ◽  
H Khoury ◽  
G van de Werve

The effect of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase activities was investigated in relation to microsomal membrane permeability. It was found that glucose-6-phosphatase activity in histone II-A-pretreated liver microsomes was stimulated to the same extent as in detergent-permeabilized microsomes, and that the substrate specificity of the enzyme for glucose 6-phosphate was lost in histone II-A-pretreated microsomes, as [U-14C]glucose-6-phosphate hydrolysis was inhibited by mannose 6-phosphate and [U-14C]mannose 6-phosphate hydrolysis was increased. The accumulation of [U-14C]glucose from [U-14C]glucose 6-phosphate into untreated microsomes was completely abolished in detergent-treated vesicles, but was increased in histone II-A-treated microsomes, accounting for the increased glucose-6-phosphatase activity, and demonstrating that the microsomal membrane was still intact. The stimulation of glucose-6-phosphatase and mannose-6-phosphatase activities by histone II-A was found to be reversed by EGTA. It is concluded that the effects of histone II-A on glucose-6-phosphatase and mannose-6-phosphatase are not caused by the permeabilization of the microsomal membrane. The measurement of mannose-6-phosphatase latency to evaluate the intactness of the vesicles is therefore inappropriate.


1995 ◽  
Vol 307 (2) ◽  
pp. 391-397 ◽  
Author(s):  
R Fulceri ◽  
A Gamberucci ◽  
H M Scott ◽  
R Giunti ◽  
A Burchell ◽  
...  

In native rat liver microsomes glucose 6-phosphatase activity is dependent not only on the activity of the glucose-6-phosphatase enzyme (which is lumenal) but also on the transport of glucose-6-phosphate, phosphate and glucose through the respective translocases T1, T2 and T3. By using enzymic assay techniques, palmitoyl-CoA or CoA was found to inhibit glucose-6-phosphatase activity in intact microsomes. The effect of CoA required ATP and fatty acids to form fatty acyl esters. Increasing concentrations (2-50 microM) of CoA (plus ATP and 20 microM added palmitic acid) or of palmitoyl-CoA progressively decreased glucose-6-phosphatase activity to 50% of the control value. The inhibition lowered the Vmax without significantly changing the Km. A non-hydrolysable analogue of palmitoyl-CoA also inhibited, demonstrating that binding of palmitoyl-CoA rather than hydrolysis produces the inhibition. Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer demonstrated that palmitoyl-CoA alone or CoA plus ATP and palmitic acid altered the microsomal permeability to glucose 6-phosphate, but not to glucose or phosphate, indicating that T1 is the site of palmitoyl-CoA binding and inhibition of glucose-6-phosphatase activity in native microsomes. The type of inhibition found suggests that liver microsomes may comprise vesicles heterogeneous with respect to glucose-6-phosphate translocase(s), i.e. sensitive or insensitive to fatty acid ester inhibition.


1974 ◽  
Vol 52 (11) ◽  
pp. 1053-1066 ◽  
Author(s):  
Sailen Mookerjea ◽  
James W. M. Yung

Addition of lysolecithin caused very marked activation of UDP-galactose:glycoprotein galactosyltransferase in rat liver microsomes and in Golgi-rich membranes. Lysolecithin activated galactosyltransferase when the enzyme was assayed both with endogenous acceptor and with exogenous proteins or monosaccharides as acceptors. Lactose synthetase activity in presence of α-lactalbumin was also stimulated by lysolecithin. Lecithin, lysophosphatidylethanolamine, lysophosphatidic acid, and glycerophosphorylcholine did not activate the enzyme, suggesting that both fatty acyl and phosphorylcholine groups of the lysolecithin molecule are required for the observed activation. The degree of activation was about the same when myristoyl-, palmitoyl-, oleoyl-, or stearoyllysolecithin were tested. The activation by lysolecithin was observed well within the physiological concentration of the lipid in the liver cell. Saturating amounts of Triton masked the effect of lysolecithin.Brief preincubation with phospholipase A activated the enzyme and generated lysolecithin in the membranes. Triton and lysolecithin activated the enzyme without any lag time, whereas phospholipase A activation was dependent on preincubation and also on an alkaline pH favorable for the hydrolysis of phospholipid. EDTA blocked the activation effect of phospholipase A but had no effect on activation by lysolecithin. Albumin and cholesterol opposed the effects of lysolecithin and phospholipase A on the enzyme. Two successive incubations of the microsomes with lysolecithin caused considerable release of the enzyme into the soluble fraction. The role of lysolecithin in the activation of the enzyme is probably related to the solubilization of the membrane and consequent enhanced interaction of the enzyme with substrate. Lysolecithin also activated N-acetylglucosaminyl- and sialyltransferase activities in microsomes. A possible role of lysolecithin is indicated in the regulation of glycosylation reactions in mammalian system.


Sign in / Sign up

Export Citation Format

Share Document