coa ligase
Recently Published Documents


TOTAL DOCUMENTS

317
(FIVE YEARS 76)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Xiu-Qi Tian ◽  
Yao Wu ◽  
Zhen Cai ◽  
Wei Qian

Diffusible signal factors (DSFs) are medium-chain fatty acids that induce bacterial quorum sensing. Among these compounds, BDSF is a structural analog of DSF that is commonly detected in bacterial species (e.g., Xanthomonas, Pseudomonas, and Burkholderia). Additionally, BDSF contributes to the interkingdom communication regulating fungal life stage transitions. How BDSF is sensed in Xanthomonas spp. and the functional diversity between BDSF and DSF remain unclear. In this study, we generated genetic and biochemical evidence that BDSF is a low-active regulator of X. campestris pv. campestris quorum sensing, whereas trans-BDSF seems not a signaling compound. BDSF is detected by the sensor histidine kinase RpfC. Although BDSF has relatively low physiological activities, it binds to the RpfC sensor with a high affinity and activates RpfC autophosphorylation to a level that is similar to that induced by DSF in vitro. The inconsistency in the physiological and biochemical activities of BDSF is not due to RpfC–RpfG phosphorylation or RpfG hydrolase. Neither BDSF nor DSF controls the phosphotransferase and phosphatase activities of RpfC or the ability of RpfG hydrolase to degrade the bacterial second messenger cyclic di-GMP. We demonstrated that BDSF is prone to degradation by RpfB, a critical fatty acyl-CoA ligase involved in the turnover of DSF-family signals. rpfB mutations lead to substantial increases in BDSF-induced quorum sensing. Although DSF and BDSF are similarly detected by RpfC, our data suggest that their differential degradation in cells is the major factor responsible for the diversity in their physiological effects.


2021 ◽  
Author(s):  
◽  
Alex Kane

<p>Manufacturing of high-grade plastics from petroleum-based feedstocks is a high-cost, unsustainable process resulting in expensive products. My overall goal was to engineer the pathway of bacterial bio-polyester formation, in order to produce high-grade bioplastics. More specifically, the aim was to introduce aromatic rings into the main-chain of the polyhydroxyalkanoate (PHA) polymer currently produced by specialist bacteria. This research aimed to create these bio-plastics from renewable resources, rather than relying on petroleum-based sources.  A key enzyme for this process is the polyhydroxyalkanoate synthase, PhaC. This enzyme is capable of polymerizing activated hydroxybutyrate-CoA monomers. I began with the establishment of a system that allowed the use of directed evolution. I constructed a minimal plasmid for the expression of PhaC and a second plasmid with the CoA ligase genes required for substrate activation. I generated error-prone PCR libraries of the Cupriavidus necator phaCa, Chromobacterium sp. USM2 phaCb and an ancestrally reconstructed phaCb-LCA that contained differing spectra of mutations. A life-or-death selection was employed to select for PhaC variants able to polymerise aromatic substrates based upon the toxicity of the un-polymerized aromatic hydroxyacid monomers. I determined the minimum inhibitory concentrations (MICs) for six of these monomers in Escherichia coli for downstream selection. Lastly, I adapted a Nile red screening method to test wild-type PHA accumulation of PhaC enzymes.  Selections for mutants capable of polymerizing aromatic monomers were implemented on the libraries generated from phaCa and phaCb. Whereas, the library generated from phaCb-LCA was screened for variants with increased wild-type activity. Selections yielded no candidates for further testing. However, the screen isolated several variants with increased wild-type activity. These variants may serve as a new scaffold for further mutagenesis experiments to achieve the overall goal; to produce a high-grade bioplastic.</p>


2021 ◽  
Author(s):  
◽  
Alex Kane

<p>Manufacturing of high-grade plastics from petroleum-based feedstocks is a high-cost, unsustainable process resulting in expensive products. My overall goal was to engineer the pathway of bacterial bio-polyester formation, in order to produce high-grade bioplastics. More specifically, the aim was to introduce aromatic rings into the main-chain of the polyhydroxyalkanoate (PHA) polymer currently produced by specialist bacteria. This research aimed to create these bio-plastics from renewable resources, rather than relying on petroleum-based sources.  A key enzyme for this process is the polyhydroxyalkanoate synthase, PhaC. This enzyme is capable of polymerizing activated hydroxybutyrate-CoA monomers. I began with the establishment of a system that allowed the use of directed evolution. I constructed a minimal plasmid for the expression of PhaC and a second plasmid with the CoA ligase genes required for substrate activation. I generated error-prone PCR libraries of the Cupriavidus necator phaCa, Chromobacterium sp. USM2 phaCb and an ancestrally reconstructed phaCb-LCA that contained differing spectra of mutations. A life-or-death selection was employed to select for PhaC variants able to polymerise aromatic substrates based upon the toxicity of the un-polymerized aromatic hydroxyacid monomers. I determined the minimum inhibitory concentrations (MICs) for six of these monomers in Escherichia coli for downstream selection. Lastly, I adapted a Nile red screening method to test wild-type PHA accumulation of PhaC enzymes.  Selections for mutants capable of polymerizing aromatic monomers were implemented on the libraries generated from phaCa and phaCb. Whereas, the library generated from phaCb-LCA was screened for variants with increased wild-type activity. Selections yielded no candidates for further testing. However, the screen isolated several variants with increased wild-type activity. These variants may serve as a new scaffold for further mutagenesis experiments to achieve the overall goal; to produce a high-grade bioplastic.</p>


Author(s):  
Hiroya Tomita ◽  
Keigo Satoh ◽  
Christopher T Nomura ◽  
Ken'ichiro Matsumoto

Abstract Chimeric polyhydroxyalkanoate synthase PhaCAR is characterized by the capacity to incorporate unusual glycolate (GL) units and spontaneously synthesize block copolymers. The GL and 3-hydroxybutyrate (3HB) copolymer synthesized by PhaCAR is a random-homo block copolymer, poly(GL-ran-3HB)-b-poly(3HB). In the present study, medium-chain-length 3-hydroxyhexanoate (3HHx) units were incorporated into this copolymer using PhaCAR for the first time. The coenzyme A (CoA) ligase from Pseudomonas oleovorans (AlkK) serves as a simple 3HHx-CoA supplying route in Escherichia coli from exogenously supplemented 3HHx. NMR analyses of the obtained polymers revealed that 3HHx units were randomly connected to 3HB units, whereas GL units were heterogeneously distributed. Therefore, the polymer is composed of two segments: P(3HB-co-3HHx) and P(GL-co-3HB-co-3HHx). The thermal and mechanical properties of the terpolymer indicate no contiguous P(3HB) segments in the material, consistent with the NMR results. Therefore, PhaCAR synthesized the novel block copolymer P(3HB-co-3HHx)-b-P(GL-co-3HB-co-3HHx), which is the first block PHA copolymer comprising two copolymer segments.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 448
Author(s):  
Polyxeni Pappi ◽  
Nikolaos Nikoloudakis ◽  
Dimitrios Fanourakis ◽  
Antonios Zambounis ◽  
Costas Delis ◽  
...  

Plants develop a plethora of defense strategies during their acclimation and interactions with various environmental stresses. Secondary metabolites play a pivotal role in the processes during stress acclimation, therefore deciphering their relevant responses exchange the interpretation of the underlying molecular mechanisms that may contribute to improved adaptability and efficacy. In the current study, tomato plants were exposed to short-term cold stress (5 °C for 16 h) or inoculated (20 d) with either Cucumber Mosaic Virus (CMV) or Potato Virus Y (PVY). Responses were recorded via the assessments of leaf total phenolic (TP) content, total flavonoid (TF) levels, and phenylalanine ammonia-lyase (PAL) enzyme activity. The transcription of the gene families regulating the core phenylpropanoid biosynthetic pathway (PBP) at an early (PAL, cinnamic acid 4-hydroxylase, 4-coumarate-CoA ligase) or late (chalcone synthase and flavonol synthase) stage was also evaluated. The results showed that cold stress stimulated an increase in TP and TF contents, while PAL enzyme activity was also elevated compared to viral infection. Besides genes transcription of the enzymes involved in the core PBP was mostly induced by cold stress, whereas transcription of the genes regulating flavonoid biosynthesis was mainly triggered by viral infection. In conclusion, abiotic and biotic stressors induced differential regulation of the core PBP and flavonoid biosynthetic metabolism. Taking the above into consideration, our results highlight the complexity of tomato responses to diverse stimuli allowing for better elucidation of stress tolerance mechanisms at this crop.


Author(s):  
Tao Zhang ◽  
Yuqiu Chen ◽  
Qinghe Zhang ◽  
Peng Yu ◽  
Qiong Li ◽  
...  

Saposhnikovia divaricata is derived from the dried roots of Saposhnikovia divaricata (Turcz.) Schischk and used as a Chinese herbal medicine for treating respiratory, immune, and nervous system diseases. The continuously increasing market demand for traditional Chinese medicine requires the commercial cultivation of Saposhnikovia divaricata using standardized methods and high yielding genotypes, such as double-headed root plants, for achieving consistent quality and a reliable supply. In this study, we aimed to identify the quantitative differences in chromone, a precursor of flavonoid biosynthesis, between plants with single- and double-headed roots using high-performance liquid chromatography and further explore the two phenotypes at the transcriptomic and metabolomic levels. Our results showed that the chromone content was significantly higher in plants with double-headed roots than in those with single-headed roots. Transcriptomic analysis revealed six significantly differentially expressed genes between the two phenotypes, including five key genes in the flavonoid biosynthesis pathway (4-coumarate-CoA ligase, chalcone synthase 1, vinorine synthase, chalcone-flavonone isomerase 1, and flavanone 3 beta-hydroxylase) and one key gene in the abscisic acid biosynthetic pathway (zeaxanthin epoxidase). Moreover, metabolomic analysis showed that the 126 differentially expressed metabolites were mainly enriched in the biosynthesis of secondary metabolites and phytohormones. Overall, our results suggest that plants with double-headed roots have higher medicinal value than those with single-headed roots, probably due to differences in various biosynthetic pathways. These data might help select the genotypes with superior yield and therapeutic properties.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengcheng Wang ◽  
Lihong Chen ◽  
Zhichen Cai ◽  
Cuihua Chen ◽  
Zixiu Liu ◽  
...  

Salinity stress significantly affects the contents of bioactive constituents in licorice Glycyrrhiza uralensis. To elucidate the molecular mechanism underlying the difference in the accumulation of these constituents under sodium chloride (NaCl, salt) stress, licorice seedlings were treated with NaCl and then subjected to an integrated transcriptomic and metabolite profiling analysis. The transcriptomic analysis results identified 3,664 differentially expressed genes (DEGs) including transcription factor family MYB and basic helix-loop-helix (bHLH). Most DEGs were involved in flavonoid and terpenoid biosynthesis pathways. In addition, 121 compounds including a triterpenoid and five classes of flavonoids (isoflavone, flavone, flavanone, isoflavan, and chalcone) were identified, and their relative levels were compared between the stressed and control groups using data from the ultrafast liquid chromatography (UFLC)–triple quadrupole–time of flight–tandem mass spectrometry (TOF–MS/MS) analysis. Putative biosynthesis networks of the flavonoids and triterpenoids were created and combined with structural DEGs such as phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase [4CL], cinnamate 4-hydroxylase [C4H], chalcone synthase [CHS], chalcone-flavanone isomerase [CHI], and flavonoid-3′,5′ hydroxylase (F3′,5′H) for flavonoids, and CYP88D6 and CYP72A154 for glycyrrhizin biosynthesis. Notably, significant upregulation of UDP-glycosyltransferase genes (UGT) in salt-stressed licorice indicated that postmodification of glycosyltransferase may participate in downstream biosynthesis of flavonoid glycosides and triterpenoid saponins. Accordingly, the expression trend of the DEGs is positively correlated with the accumulation of glycosides. Our study findings indicate that key DEGs and crucial UGT genes co-regulate flavonoid and saponin biosynthesis in licorice under salt stress.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Shin-Won Lee ◽  
Han Kim ◽  
Joong-Hoon Ahn

AbstractHydroxycinnamic acids (HCs) are natural compounds that form conjugates with diverse compounds in nature. Ethyl caffeate (EC) is a conjugate of caffeic acid (an HC) and ethanol. It has been found in several plants, including Prunus yedoensis, Polygonum amplexicaule, and Ligularia fischeri. Although it exhibits anticancer, anti-inflammatory, and antifibrotic activities, its biosynthetic pathway in plants still remains unknown. This study aimed to design an EC synthesis pathway and clone genes relevant to the same. Genes involved in the caffeic acid synthesis pathway (tyrosine ammonia-lyase (TAL) and p-coumaric acid hydroxylase (HpaBC)) were introduced into Escherichia coli along with 4-coumaroyl CoA ligase (4CL) and acyltransferases (AtCAT) cloned from Arabidopsis thaliana. In presence of ethanol, E. coli harboring the above genes successfully synthesized EC. Providing more tyrosine through the overexpression of shikimate-pathway gene-module construct and using E. coli mutant enhanced EC yield; approximately 116.7 mg/L EC could be synthesized in the process. Synthesis of four more alkyl caffeates was confirmed in this study; these might potentially possess novel biological properties, which would require further investigation.


2021 ◽  
Author(s):  
Mingzhuo Li ◽  
Lili Guo ◽  
Yeru Wang ◽  
Yanzhi Li ◽  
Xiaolan Jiang ◽  
...  

Abstract Tea is rich in flavonoids benefiting human health. Lignin is essential for tea plant growth. Both flavonoids and lignin defend plants from stresses. The biosynthesis of lignin and flavonoids shares a key intermediate, p-coumaroyl-CoA, which is formed from p-coumaric acid catalyzed by p-coumaric acid: CoA ligase (4CL). Herein, we reported two 4CL paralogs from tea plant, Cs4CL1 and Cs4CL2, which were a member of class I and II, respectively. Cs4CL1 was mainly expressed in roots and stems, while Cs4CL2 was mainly expressed in leaves. The promoter of Cs4CL1 had AC, light and stress-inducible (LSI), and meristem-specific elements, while that of Cs4CL2 had AC and LSI elements only. Moreover, the promoter of Cs4CL1 had two more stress-inducible elements than Cs4CL2 had and the two promoters had six different light-inducible elements. These features suggested their differences in their responses to environmental conditions. Three stress treatments indicated that the expression of Cs4CL1 was sensitive to mechanical wounding, while the expression of Cs4CL2 was UV-B-inducible. Enzymatic assay showed that both recombinant Cs4CL1 and Cs4CL2 transformed p-coumaric acid, ferulic acid and caffeic acid to their corresponding CoA ethers. Kinetic analysis indicated that the recombinant Cs4CL1 preferred to catalyze caffeic acid, while the recombinant Cs4CL2 favored to catalyze p-coumaric acid. The overexpression of both Cs4CL1 and Cs4CL2 increased the levels of chlorogenic acid and total lignin in transgenic tobacco seedlings. In addition, the overexpression of Cs4CL2 increased the levels of three flavonoid compounds. These findings indicate the differences of Cs4CL1 and Cs4CL2 in the phenylpropanoid metabolism.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1421
Author(s):  
Mian Wang ◽  
Yahui Zhu ◽  
Pei Wang ◽  
Zhenxin Gu ◽  
Runqiang Yang

It has been revealed that high NaCl stress (>60 mmol L−1) induced phenolics accumulation in barley seedlings, with γ-aminobutyric acid (GABA) playing a key role. Interestingly, low NaCl stimulus (20 mmol L−1) enhancing phenolics synthesis and growth of barley seedlings was also reported recently. Hence, exogenous GABA and its bio-synthesis inhibitor 3-mercaptopropionic acid (3-MP) were applied to reveal the mechanism of GABA regulating phenolics metabolism in barley seedlings treated with 20 mmol L−1 NaCl. The contents of total phenolics and flavonoids significantly increased by 11.64% and 14.52% under NaCl, respectively. The addition of GABA further increased phenolics and flavonoids contents, especially for gallic acid, protocatechuic acid, caffeic acid, and quercetin, compared with NaCl treatment. Simultaneously, GABA increased the activities and mRNA levels of phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumalyl CoA ligase (4CL). The addition of 3-MP suppressed the above effects, except for increasing the protein levels of PAL, C4H, and 4CL. Low concentration of NaCl not only promoted growth, but also stimulated endogenous GABA metabolism to affect key enzymes activities and mRNA levels for phenolics synthesis in barley seedlings.


Sign in / Sign up

Export Citation Format

Share Document