A phospho-oligosaccharide mimics insulin action on glycogen phosphorylase and pyruvate kinase activities in isolated rat hepatocytes

1987 ◽  
Vol 147 (2) ◽  
pp. 765-771 ◽  
Author(s):  
JoséF. Alvarez ◽  
María A. Cabello ◽  
Juan E. Felíu ◽  
JoséM. Mato
1983 ◽  
Vol 214 (3) ◽  
pp. 999-1002 ◽  
Author(s):  
J E Felíu ◽  
J Marco

The newly isolated peptide PHI provoked a dose-dependent stimulation of glycogenolysis and gluconeogenesis in isolated rat hepatocytes; at 1 microM-PHI, both processes were increased 1.6-fold as compared with basal values. These PHI-mediated effects were accompanied by the activation of glycogen phosphorylase and the inactivation of pyruvate kinase. PHI (1 microM) also caused a 2-fold increase in hepatocyte cyclic AMP.


1978 ◽  
Vol 176 (3) ◽  
pp. 791-797 ◽  
Author(s):  
Louis Hue ◽  
Juan Emilio Felíu ◽  
Henri-Géry Hers

Hepatocytes isolated from the livers of fed rats were used for a comparative study of the effects of phenylephrine, vasopressin and glucagon on gluconeogenesis and on enzymes of glycogen metabolism. When hepatocytes were incubated in the presence of Ca2+, phenylephrine stimulated gluconeogenesis from pyruvate less than did glucagon, but, in contrast with this hormone, it did not affect the activities of protein kinase and pyruvate kinase, nor the concentration of phosphoenolpyruvate, and it did not decrease the release of 3H2O from [6-3H]glucose. The effects of vasopressin were similar to those of phenylephrine. Gluconeogenesis from fructose was also stimulated by phenylephrine and, more markedly, by glucagon at the expense of the conversion of fructose into lactate. Insulin was able to antagonize the stimulatory effect of phenylephrine on gluconeogenesis from pyruvate. When Ca2+ was removed from the incubation medium, phenylephrine still stimulated gluconeogenesis from pyruvate, but it also caused an activation of protein kinase and an inactivation of pyruvate kinase; accordingly, the concentration of phosphoenolpyruvate was increased, and, in contrast, vasopressin had no effect on all these parameters. The property of phenylephrine to cause the activation of glycogen phosphorylase was decreased by glucose or by the absence of Ca2+; it was abolished when these two conditions were combined. Glycogen synthase was inactivated by phenylephrine in the presence or the absence of Ca2+, although presumably by different mechanisms.


Life Sciences ◽  
1992 ◽  
Vol 50 (23) ◽  
pp. PL203-PL208 ◽  
Author(s):  
Robert L. Judd ◽  
Vidya V. Kunjathoor ◽  
Usha A. Pillai ◽  
Paul W. Ferguson ◽  
Philip J. Medon

Metabolism ◽  
1993 ◽  
Vol 42 (5) ◽  
pp. 624-630 ◽  
Author(s):  
Luisa López-Alarcón ◽  
Elvira Melian ◽  
María J. Muñoz-Alonso ◽  
Carmen Guijarro ◽  
Lisardo Boscá ◽  
...  

1984 ◽  
Vol 218 (1) ◽  
pp. 165-170 ◽  
Author(s):  
L Hue ◽  
R Bartrons

Hepatocytes from overnight-starved rats were incubated with 1-20 mM-fructose, -dihydroxyacetone, -glycerol, -alanine or -lactate and -pyruvate with or without 0.1 microM-glucagon. The production of glucose and lactate was measured, as was the content of fructose 2,6-bisphosphate. The concentrations of fructose (below 5 mM) and dihydroxyacetone (above 1 mM) that gave rise to an increase in fructose 2,6-bisphosphate were those at which a glucagon effect on the production of glucose and lactate could be observed. Glycerol had no effect on fructose 2,6-bisphosphate content or on production of lactate, and glucagon did not stimulate the production of glucose from this precursor. With alanine or lactate/pyruvate as substrates, glucagon stimulated glucose production whether the concentration of fructose 2,6-bisphosphate was increased or not. The extent of inactivation of pyruvate kinase by glucagon was not affected by the presence of the various gluconeogenic precursors. The role of fructose 2,6-bisphosphate in the effect of glucagon on gluconeogenesis from precursors entering the pathway at the level of triose phosphates or pyruvate is discussed.


Sign in / Sign up

Export Citation Format

Share Document