Conservation implications of bamboo flowering and death in Japan

1970 ◽  
Vol 2 (3) ◽  
pp. 227-229 ◽  
Author(s):  
M. Numata
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Dan Hou ◽  
Ling Li ◽  
Tengfei Ma ◽  
Jialong Pei ◽  
Zhongyu Zhao ◽  
...  

AbstractBamboo is known for its edible shoots and beautiful texture and has considerable economic and ornamental value. Unique among traditional flowering plants, many bamboo plants undergo extensive synchronized flowering followed by large-scale death, seriously affecting the productivity and application of bamboo forests. To date, the molecular mechanism of bamboo flowering characteristics has remained unknown. In this study, a SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like gene, BoMADS50, was identified from Bambusa oldhamii. BoMADS50 was highly expressed in mature leaves and the floral primordium formation period during B. oldhamii flowering and overexpression of BoMADS50 caused early flowering in transgenic rice. Moreover, BoMADS50 could interact with APETALA1/FRUITFULL (AP1/FUL)-like proteins (BoMADS14-1/2, BoMADS15-1/2) in vivo, and the expression of BoMADS50 was significantly promoted by BoMADS14-1, further indicating a synergistic effect between BoMADS50 and BoAP1/FUL-like proteins in regulating B. oldhamii flowering. We also identified four additional transcripts of BoMADS50 (BoMADS50-1/2/3/4) with different nucleotide variations. Although the protein-CDS were polymorphic, they had flowering activation functions similar to those of BoMADS50. Yeast one-hybrid and transient expression assays subsequently showed that both BoMADS50 and BoMADS50-1 bind to the promoter fragment of itself and the SHORT VEGETATIVE PHASE (SVP)-like gene BoSVP, but only BoMADS50-1 can positively induce their transcription. Therefore, nucleotide variations likely endow BoMADS50-1 with strong regulatory activity. Thus, BoMADS50 and BoMADS50-1/2/3/4 are probably important positive flowering regulators in B. oldhamii. Moreover, the functional conservatism and specificity of BoMADS50 and BoMADS50-1 might be related to the synchronized and sporadic flowering characteristics of B. oldhamii.


Mammalia ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Shakti Prajapati

AbstractPopulations of endangered Ganges and Indus river dolphins have been under severe threat from diversion of river water by dams, barrages, and canal networks across the Indus and Ganges–Brahmaputra river basins. River dolphins prefer deep water and might enter irrigation canals in the dry-season, getting stranded there. Stranding can cause mortality and local population declines, and poses an emerging challenge to river dolphin conservation efforts. In Pakistan’s Indus river basin, stranding rates of Indus dolphins in irrigation canals are high, and well-coordinated rescue-release operations are undertaken. Despite commendable river dolphin rescue efforts in some parts of India, stranding cases are not always reported. From open-access media reports (2007–08 to 2017–18), I found 26 stranding cases of Ganges river dolphins from the Ghaghara–Sharada canal network across seven districts of Uttar Pradesh, India. Of these, 62% reports were from 2015 to 2016. Most cases occurred in secondary and tertiary canal branches. Interviews with fishers, farmers, and government officials revealed low awareness of stranding cases. Stranded dolphins might have no chance of returning to their source habitat, unless rescued. From my results, I discuss how current barrage-canal operations could influence dolphin stranding risk, and their implications for flow management in the Ghaghara–Sharada river basin.


Author(s):  
Gretchen L. Stokes ◽  
Leandro Castello ◽  
Thiago A. Petersen ◽  
Steven J. Cooke ◽  
Michael Power ◽  
...  

1974 ◽  
Vol 87 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Makoto Numata ◽  
Isao Ikusima ◽  
Nobunori Ohga

Sign in / Sign up

Export Citation Format

Share Document