Effects of fluoroacetate and fluorocitrate on the metabolic compartmentation of tricarboxylic acid cycle in rat brain slices

1972 ◽  
Vol 42 (1) ◽  
pp. 117-128 ◽  
Author(s):  
S.-C. Cheng ◽  
S. Kumar ◽  
G.A. Casella
1978 ◽  
Vol 172 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Steven C. Dennis ◽  
John B. Clark

1. The interrelationship of metabolism of pyruvate or 3-hydroxybutyrate and glutamate transamination in rat brain mitochondria was studied. 2. If brain mitochondria are incubated in the presence of equimolar concentrations of pyruvate and glutamate and the K+ concentration is increased from 1 to 20mm, the rate of pyruvate utilization is increased 3-fold, but the rate of production of aspartate and 2-oxoglutarate is decreased by half. 3. Brain mitochondria incubated in the presence of a fixed concentration of glutamate (0.87 or 8.7mm) but different concentrations of pyruvate (0 to 1mm) produce aspartate at rates that decrease as the pyruvate concentration is increased. At 1mm-pyruvate, the rate of aspartate production is decreased to 40% of that when zero pyruvate was present. 4. Brain mitochondria incubated in the presence of glutamate and malate alone produce 2-oxoglutarate at rates stoicheiometric with the rate of aspartate production. Both the 2-oxoglutarate and aspartate accumulate extramitochondrially. 5. Externally added 2-oxoglutarate has little inhibitory effect (Ki approx. 31mm) on the production of aspartate from glutamate by rat brain mitochondria. 6. It is concluded that the inhibitory effect of increased C2 flux into the tricarboxylic acid cycle on glutamate transamination is caused by competition for oxaloacetate between the transaminase and citrate synthase. 7. Evidence is provided from a reconstituted malate–aspartate (or Borst) cycle with brain mitochondria that increased C2 flux into the tricarboxylic acid cycle from pyruvate may inhibit the reoxidation of exogenous NADH. These results are discussed in the light of the relationship between glycolysis and reoxidation of cytosolic NADH by the Borst cycle and the requirement of the brain for a continuous supply of energy.


1970 ◽  
Vol 120 (2) ◽  
pp. 345-351 ◽  
Author(s):  
D. D. Clarke ◽  
W. J. Nicklas ◽  
S. Berl

1. The effect of fluoroacetate and fluorocitrate on the compartmentation of the glutamate–glutamine system was studied in brain slices with l-[U-14C]glutamate, l-[U-14C]aspartate, [1-14C]acetate and γ-amino[1-14C]butyrate as precursors and in homogenates of brain tissue with [1-14C]acetate. The effect of fluoroacetate was also studied in vivo in mouse brain with [1-14C]acetate as precursor. 2. Fluoroacetate and fluorocitrate inhibit the labelling of glutamine from all precursors but affect the labelling of glutamate to a much lesser extent. This effect is not due to inhibition of glutamine synthetase. It is interpreted as being due to selective inhibition of the metabolism of a small pool of glutamate that preferentially labels glutamine.


1971 ◽  
Vol 121 (3) ◽  
pp. 469-481 ◽  
Author(s):  
A. J. Patel ◽  
R. Balázs

1. The effects of treatment with thyroid hormone (tri-iodothyronine) and of neonatal thyroidectomy on the cerebral metabolism of [U-14C]leucine were investigated during the period of functional maturation of the rat brain extending from 9 to 25 days after birth. 2. Age-dependent changes in the labelling of brain constituents under normal conditions appear to depend on changes in the availability of blood-borne [14C]leucine resulting from differential rates of growth of body and brain; but developmental changes in the pool size of free leucine and in the rates of protein synthesis and oxidation of leucine are also involved. 3. Treatment with thyroid hormone had no significant effect on the conversion of leucine carbon into proteins and lipids; and the age-dependent changes in the concentration and specific radioactivity of leucine were similar to controls. On the other hand there was an acceleration in the conversion of leucine carbon into amino acids associated with the tricarboxylic acid cycle. These observations indicate that leucine oxidation was the process mainly affected. 4. The specific radioactivity of glutamine relative to that of glutamate was used as an index of metabolic compartmentation in brain tissue. Treatment with thyroid hormone advanced the development of metabolic compartmentation. 5. Neonatal thyroidectomy led to a marked decrease in the conversion of leucine carbon into proteins and lipids and to a significant increase in the amount of 14C combined in the amino acids associated with the tricarboxylic acid cycle. The age-dependent increase in the glutamate/glutamine specific-radioactivity ratio was strongly retarded. 6. The increased conversion of leucine carbon into cerebral amino acids applied to glutamate and aspartate, but not to glutamine and γ-aminobutyrate. This observation facilitated the understanding of the effects of thyroid deprivation on brain metabolism and provided new evidence for the allocation of morphological structures to the metabolic compartments in brain tissue. 7. In contrast with the marked effects of the thyroid state on metabolic compartmentation, it had relatively little effect on the developmental changes in the concentration of amino acids in the brain. 8. The rate of conversion of leucine carbon into the ‘cycle amino acids’ both under normal conditions and in thyroid deficiency indicated a special metabolic relationship between glutamate and aspartate on the one hand, and glutamine and γ-aminobutyrate on the other.


1970 ◽  
Vol 116 (3) ◽  
pp. 469-481 ◽  
Author(s):  
B. J. Hammond ◽  
Y. Machiyama ◽  
R. Balázs ◽  
T. Julian ◽  
D. Richter

1. The metabolism of γ-aminobutyrate (GABA) was investigated in cerebral-cortex slices incubated in glucose–saline medium with [1-14C]GABA and [U-14C]-glucose as labelled substrates. 2. A rapid release of GABA from the tissue, amounting to 25–30% of the total, was observed on addition of 66m-equiv. of K+/1 to the medium; the liberation of other amino acids was relatively small. The effect was apparently specific for K+; GABA was not released on addition of equivalent amounts of Na+ or on increasing the respiration rate with 10mm-ammonium chloride. The results show that GABA behaves like the transmitter compounds (acetylcholine, catecholamines) on K+ stimulation, and therefore now satisfies certain of the criteria required for a transmitter in mammalian brain. 3. The release of GABA from the tissue on addition of K+ was followed by a slow re-uptake. The rate of uptake of GABA in a medium containing 5.9m-equiv. of K+/1 was more than four times that in a medium containing 66m-equiv. of K+/1. 4. The concentration of GABA in brain tissue incubated for 1h in a medium containing 66m-equiv. of K+/1 was about 50% higher than that observed under normal conditions. 5. There was evidence that exogenous [14C]GABA mixed with the endogenous pool(s), since the proportion of the total GABA released on K+ stimulation was the same, and the specific radioactivity of the liberated GABA was close to that remaining in the tissue, whether the GABA was labelled by [1-14C]GABA from the medium or generated in the tissue from [14C]glucose. 6. On the basis of these findings and the observations outlined in the preceding papers it was possible to calculate the kinetic constants of GABA metabolism by computer simulation of the results. K+ stimulation led to a 2.5-fold increase in the flux through the tricarboxylic acid cycle, whereas the flux in the GABA bypath was little affected; as a result the flux through the GABA bypath, which under normal conditions was 8% of that through the tricarboxylic acid cycle, decreased to 3–5%. 7. The metabolism of glutamine was greatly affected by K+-stimulation. The ratio of the concentration of glutamine in the slices to that in the medium, which under normal conditions was the smallest among the amino acids investigated, increased from about 17 to 63 in 1h. This effect was attributable partly to an uptake of glutamine from the medium (1.8μmol/h per g) and partly to a net increase in the total amount of glutamine (2.6μmol/h per g). At 1h after the addition of K+ the net gain of glutamine could be accounted for by the decrease of glutamate. 8. Metabolic compartmentation was evident when brain-cortex slices were incubated in glucose–saline medium and the labelled substrate was [14C]GABA, since the specific radioactivity of glutamine exceeded that of glutamate. On addition of K+ the signs of metabolic compartmentation promptly disappeared: this effect was apparently associated with an increase in the permeability of the compartments containing labelled metabolites derived from [14C]GABA. The change in the permeability, however, did not affect all the compartments; when the labelled substrate was [14C]glucose the equilibration of labelled amino acids between tissue and medium was similar under normal conditions and in the presence of high concentrations of K+. 9. The metabolism of [14C]glucose was followed by measuring oxygen uptake, respiratory 14CO2, and incorporation of 14C into amino acids. The results showed that K+ stimulation increased the flux of glucose carbon, both in the glycolytic pathway and in the tricarboxylic acid cycle.


1996 ◽  
Vol 93 (15) ◽  
pp. 7612-7617 ◽  
Author(s):  
F. Hyder ◽  
J. R. Chase ◽  
K. L. Behar ◽  
G. F. Mason ◽  
M. Siddeek ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document