tricarboxylic acid cycle
Recently Published Documents


TOTAL DOCUMENTS

1950
(FIVE YEARS 562)

H-INDEX

95
(FIVE YEARS 10)

2022 ◽  
Vol 12 ◽  
Author(s):  
Haiying Ma ◽  
Yujuan Niu

Highly pathogenic fowl adenovirus serotype 4 (FAdV-4) is the causative agent of hydropericardium syndrome (HPS), which is characterized by pericardial effusion and hepatitis, and is one of the foremost causes of economic losses to the poultry industry over the last 30 years. However, the metabolic changes in cells in response to FAdV-4 infection remain unclear. In order to understand the metabolic interactions between the host cell and virus, we utilized ultra-high-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry to analyze the metabolic profiles with hepatocellular carcinoma cell line (LMH) infected with FAdV-4. The results showed that FAdV-4 could restore metabolic networks in LMH cells and tricarboxylic acid cycle, glycolysis, and metabolism of purines, pyrimidines, alanine, aspartate, glutamate, and amino sugar and nucleotide sugar moieties. Moreover, FAdV-4 production was significantly reduced in LMH cells cultured in glucose or glutamine-deficient medium. These observations highlighted the importance of host cell metabolism in virus replication. Therefore, similarities and disparities in FAdV-4-regulation of the metabolism of host cells could help improve targeted drug and reduce infection.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Shanshan Song ◽  
Lauren Yu ◽  
Md Nabiul Hasan ◽  
Satya S. Paruchuri ◽  
Steven J. Mullett ◽  
...  

AbstractNew research shows that disease-associated microglia in neurodegenerative brains present features of elevated phagocytosis, lysosomal functions, and lipid metabolism, which benefit brain repair. The underlying mechanisms remain poorly understood. Intracellular pH (pHi) is important for regulating aerobic glycolysis in microglia, where Na/H exchanger (NHE1) is a key pH regulator by extruding H+ in exchange of Na+ influx. We report here that post-stroke Cx3cr1-CreER+/−;Nhe1flox/flox (Nhe1 cKO) brains displayed stimulation of microglial transcriptomes of rate-limiting enzyme genes for glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The other upregulated genes included genes for phagocytosis and LXR/RXR pathway activation as well as the disease-associated microglia hallmark genes (Apoe, Trem2, Spp1). The cKO microglia exhibited increased oxidative phosphorylation capacity, and higher phagocytic activity, which likely played a role in enhanced synaptic stripping and remodeling, oligodendrogenesis, and remyelination. This study reveals that genetic blockade of microglial NHE1 stimulated oxidative phosphorylation immunometabolism, and boosted phagocytosis function which is associated with tissue remodeling and post-stroke cognitive function recovery.


2022 ◽  
Vol 12 ◽  
Author(s):  
Amin Liu ◽  
Shengzhi Liu ◽  
Yaohan Li ◽  
Minglei Tao ◽  
Haote Han ◽  
...  

Mahonia bealei (M. bealei) is a traditional Chinese medicine containing a high alkaloid content used to treat various diseases. Generally, only dried root and stem are used as medicines, considering that the alkaloid content in M. bealei leaves is lower than in the stems and roots. Some previous research found that alkaloid and flavonoid contents in the M. bealei leaves may increase when exposed to ultraviolet B (UV-B) radiation. However, the underlying mechanism of action is still unclear. In this study, we used titanium dioxide material enrichment and mass-based label-free quantitative proteomics techniques to explore the effect and mechanism of M. bealei leaves when exposed to UV-B treatment. Our data suggest that UV-B radiation increases the ATP content, photosynthetic pigment content, and some enzymatic/nonenzymatic indicators in the leaves of M. bealei. Moreover, phosphoproteomics suggests phosphoproteins related to mitogen-activated protein kinase (MAPK) signal transduction and the plant hormone brassinosteroid signaling pathway as well as phosphoproteins related to photosynthesis, glycolysis, the tricarboxylic acid cycle, and the amino acid synthesis/metabolism pathway are all affected by UV-B radiation. These results suggest that the UV-B radiation activates the oxidative stress response, MAPK signal transduction pathway, and photosynthetic energy metabolism pathway, which may lead to the accumulation of secondary metabolites in M. bealei leaves.


Cancers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 231
Author(s):  
Chengnan Fang ◽  
Hui Wang ◽  
Zhikun Lin ◽  
Xinyu Liu ◽  
Liwei Dong ◽  
...  

Hepatocellular carcinoma (HCC) displays a high degree of metabolic and phenotypic heterogeneity and has dismal prognosis in most patients. Here, a gas chromatography–mass spectrometry (GC-MS)-based nontargeted metabolomics method was applied to analyze the metabolic profiling of 130 pairs of hepatocellular tumor tissues and matched adjacent noncancerous tissues from HCC patients. A total of 81 differential metabolites were identified by paired nonparametric test with false discovery rate correction to compare tumor tissues with adjacent noncancerous tissues. Results demonstrated that the metabolic reprogramming of HCC was mainly characterized by highly active glycolysis, enhanced fatty acid metabolism and inhibited tricarboxylic acid cycle, which satisfied the energy and biomass demands for tumor initiation and progression, meanwhile reducing apoptosis by counteracting oxidative stress. Risk stratification was performed based on the differential metabolites between tumor and adjacent noncancerous tissues by using nonnegative matrix factorization clustering. Three metabolic clusters displaying different characteristics were identified, and the cluster with higher levels of free fatty acids (FFAs) in tumors showed a worse prognosis. Finally, a metabolite classifier composed of six FFAs was further verified in a dependent sample set to have potential to define the patients with poor prognosis. Together, our results offered insights into the molecular pathological characteristics of HCC.


Author(s):  
Bianca L Ferreira ◽  
Ivan Ramirez-Moral ◽  
Natasja A Otto ◽  
Reinaldo Salomão ◽  
Alex F de Vos ◽  
...  

Abstract Pseudomonas (P.) aeruginosa is a common respiratory pathogen that causes injurious airway inflammation during acute pneumonia. PPAR (peroxisome proliferator-activated receptor)-γ is involved in the regulation of metabolic and inflammatory responses in different cell types and synthetic agonists of PPAR-γ exert anti-inflammatory effects on myeloid cells in vitro and in models of inflammation in vivo. We sought to determine the effect of the PPAR-γ agonist pioglitazone on airway inflammation induced by acute P. aeruginosa pneumonia, focusing on bronchial epithelial cells. Mice pretreated with pioglitazone or vehicle (-24 and -1 hour) were infected with P. aeruginosa via the airways. Pioglitazone treatment was associated with increased expression of chemokine (Cxcl1, Cxcl2, Ccl20) and cytokine genes (Tnfa, Il6, Cfs3) in bronchial brushes obtained 6 hours after infection. This proinflammatory effect was accompanied by increased expression of Hk2 and Pfkfb3, genes encoding rate limiting enzymes of glycolysis; concurrently, the expression of Sdha, important for maintaining metabolite flux in the tricarboxylic acid cycle, was reduced in bronchial epithelial cells of pioglitazone treated-mice. Pioglitazone inhibited bronchoalveolar inflammatory responses measured in lavage fluid. These results suggest that pioglitazone exerts a selective proinflammatory effect on bronchial epithelial cells during acute P. aeruginosa pneumonia, possibly by enhancing intracellular glycolysis.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Zhiling Tang ◽  
Haiming Chen ◽  
Ming Zhang ◽  
Zhuye Fan ◽  
Qiuping Zhong ◽  
...  

Pseudomonas lundensis is the main bacterium responsible for meat spoilage and its control is of great significance. 3-Carene, a natural monoterpene, has been proved to possess antimicrobial activities. This study aimed to investigate the antibacterial activity and mechanism of 3-carene against the meat spoilage bacterium P. lundensis, and explore its application on pork. After 3-carene treatment, cellular structural changes were observed. Cell walls and membranes were destroyed, resulting in the leakage of alkaline phosphatase and cellular contents. The decreased activity of Ca2+-Mg2+-ATPase and Na+-K+-ATPase showed the imbalance of intracellular ions. Subsequently, adenosine triphosphate (ATP) content and oxidative respiratory metabolism characteristics indicated that 3-carene inhibited the metabolism of the tricarboxylic acid cycle in P. lundensis. The results of binding 3-carene with the vital proteins (MurA, OmpW, and AtpD) related to the formation of the cell wall, the composition of the cell membrane, and the synthesis of ATP further suggested that 3-carene possibly affected the normal function of those proteins. In addition, the growth of P. lundensis and increase in pH were inhibited in pork during the 5 days of cold storage after the samples were pre-treated with 3-carene. These results show the anti-P. lundensis activity and mechanism of 3-carene, and its potential use in meat preservation under refrigerated conditions.


2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Xinhua Qi ◽  
Wenlong Yan ◽  
Zhibei Cao ◽  
Mingzhu Ding ◽  
Yingjin Yuan

Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.


Nature Plants ◽  
2021 ◽  
Author(s):  
Haim Treves ◽  
Anika Küken ◽  
Stéphanie Arrivault ◽  
Hirofumi Ishihara ◽  
Ines Hoppe ◽  
...  

AbstractPhotosynthesis-related pathways are regarded as a promising avenue for crop improvement. Whilst empirical studies have shown that photosynthetic efficiency is higher in microalgae than in C3 or C4 crops, the underlying reasons remain unclear. Using a tailor-made microfluidics labelling system to supply 13CO2 at steady state, we investigated in vivo labelling kinetics in intermediates of the Calvin Benson cycle and sugar, starch, organic acid and amino acid synthesis pathways, and in protein and lipids, in Chlamydomonas reinhardtii, Chlorella sorokiniana and Chlorella ohadii, which is the fastest growing green alga on record. We estimated flux patterns in these algae and compared them with published and new data from C3 and C4 plants. Our analyses identify distinct flux patterns supporting faster growth in photosynthetic cells, with some of the algae exhibiting faster ribulose 1,5-bisphosphate regeneration and increased fluxes through the lower glycolysis and anaplerotic pathways towards the tricarboxylic acid cycle, amino acid synthesis and lipid synthesis than in higher plants.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Dylan Gerard Ryan ◽  
Ming Yang ◽  
Hiran A Prag ◽  
Giovanny Rodriguez Blanco ◽  
Efterpi Nikitopoulou ◽  
...  

The Tricarboxylic Acid Cycle (TCA) cycle is arguably the most critical metabolic cycle in physiology and exists as an essential interface coordinating cellular metabolism, bioenergetics, and redox homeostasis. Despite decades of research, a comprehensive investigation into the consequences of TCA cycle dysfunction remains elusive. Here, we targeted two TCA cycle enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), and combined metabolomics, transcriptomics, and proteomics analyses to fully appraise the consequences of TCA cycle inhibition (TCAi) in murine kidney epithelial cells. Our comparative approach shows that TCAi elicits a convergent rewiring of redox and amino acid metabolism dependent on the activation of ATF4 and the integrated stress response (ISR). Furthermore, we also uncover a divergent metabolic response, whereby acute FHi, but not SDHi, can maintain asparagine levels via reductive carboxylation and maintenance of cytosolic aspartate synthesis. Our work highlights an important interplay between the TCA cycle, redox biology and amino acid homeostasis.


Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Konlawij Trongtrakul ◽  
Chanisa Thonusin ◽  
Chaicharn Pothirat ◽  
Siriporn C. Chattipakorn ◽  
Nipon Chattipakorn

A disruption of several metabolic pathways in critically ill patients with sepsis indicates that metabolomics might be used as a more precise tool for sepsis and septic shock when compared with the conventional biomarkers. This article provides information regarding metabolomics studies in sepsis and septic shock patients. It has been shown that a variety of metabolomic pathways are altered in sepsis and septic shock, including amino acid metabolism, fatty acid oxidation, phospholipid metabolism, glycolysis, and tricarboxylic acid cycle. Based upon this comprehensive review, here, we demonstrate that metabolomics is about to change the world of sepsis biomarkers, not only for its utilization in sepsis diagnosis, but also for prognosticating and monitoring the therapeutic response. Additionally, the future direction regarding the establishment of studies integrating metabolomics with other molecular modalities and studies identifying the relationships between metabolomic profiles and clinical characteristics to address clinical application are discussed in this article. All of the information from this review indicates the important impact of metabolomics as a tool for diagnosis, monitoring therapeutic response, and prognostic assessment of sepsis and septic shock. These findings also encourage further clinical investigations to warrant its use in routine clinical settings.


Sign in / Sign up

Export Citation Format

Share Document