Effects of serotonin on extracellular potassium concentration in the rat hippocampal slice

1980 ◽  
Vol 195 (2) ◽  
pp. 389-401 ◽  
Author(s):  
M. Segal ◽  
M.J. Gutnick
Author(s):  
J Firth

The normal range of potassium concentration in serum is 3.5 to 5.0 mmol/litre and within cells it is 150 to 160 mmol/litre, the ratio of intracellular to extracellular potassium concentration being a critical determinant of cellular resting membrane potential and thereby of the function of excitable tissues....


1987 ◽  
Vol 57 (2) ◽  
pp. 496-509 ◽  
Author(s):  
M. McCarren ◽  
B. E. Alger

We have used the rat hippocampal slice preparation as a model system for studying the epileptogenic consequences of a reduction in neuronal Na+-K+ pump activity. The cardiac glycosides (CGs) strophanthidin and dihydroouabain were used to inhibit the pump. These drugs had readily reversible effects, provided they were not applied for longer than 15-20 min. Hippocampal CA1 pyramidal cells were studied with intracellular recordings; population spike responses and changes in extracellular potassium concentration ([K+]o) were also measured in some experiments. This investigation focused on the possibility that intrinsic neuronal properties are affected by Na+-K+ pump inhibitors. The CGs altered the CA1 population response evoked by an orthodromic stimulus from a single spike to an epileptiform burst. Measurements of [K+]o showed that doses of CGs sufficient to cause bursting were associated with only minor (less than 1 mM) changes in resting [K+]o. However, the rate of K+ clearance from the extracellular space was moderately slowed, confirming that a decrease in pump activity had occurred. Intracellular recording indicated that CG application resulted in a small depolarization and apparent increase in resting input resistance of CA1 neurons. Although CGs caused a decrease in fast gamma-aminobutyric acid mediated inhibitory postsynaptic potentials (IPSPs), CGs could also enhance the latter part of the epileptiform burst induced by picrotoxin, an antagonist of these IPSPs. Since intrinsic Ca2+ conductances comprise a significant part of the burst, this suggested the possibility that Na+-K+ pump inhibitors affected an intrinsic neuronal conductance. CGs decreased the threshold for activation of Ca2+ spikes (recorded in TTX and TEA) without enhancing the spikes themselves, indicating that a voltage-dependent subthreshold conductance might be involved. The action of CGs on Ca2+ spike threshold could not be mimicked by increasing [K+]o up to 10 mM. A variety of K+ conductance antagonists, including TEA, 4-AP, Ba2+ (in zero Ca2+), and carbachol were ineffective in preventing the CG-induced threshold shift of the Ca2+ spike. The shift was also seen in the presence of a choline-substituted low Na+ saline. Enhancement of a slow inward Ca2+ current is a possible mechanism for the decrease in Ca2+ spike threshold; however, it is impossible to use the Ca2+ spike as an assay when testing the effects of blocking Ca2+ conductances. Therefore, we studied the influence of CGs on the membrane current-voltage (I-V) curve, since persistent voltage-dependent conductances appear as nonlinearities in the I-V plot obtained under current clamp.(ABSTRACT TRUNCATED AT 400 WORDS)


1976 ◽  
Vol 39 (4) ◽  
pp. 909-923 ◽  
Author(s):  
I. Parnas ◽  
S. Hochstein ◽  
H. Parnas

1. Theoretical computations were conducted on a computer model of a segmented, nonhomogeneous axon to understand the mechanism of frequency block of conduction. 2. The model is based on the Hodgkin-Huxley equations modified in several ways to better describe the cockroach axon. We used cockroach parameters where available. 3. The increase in fiber radius was spread over a series of segments to approximate a taper. We found that a taper allows a larger overall increase in fiber diameter than a single step to be successfully passed. 4. We studied effects on a train of impulses. The modified equations included effects due to changes in extracellular potassium concentration resulting from the repetitive firing of the axon. 5. An increase in diameter which allows a single spike to pass blocks the subsequent impulses in a train at the taper if potassium concentration variability is introduced. This could explain the low-pass filter characteristics of axon constrictions. 6. Results of the model fit well with the experiemental spike shape and height. Data were computed for the refractory period and its dependence on the taper parameters.


1983 ◽  
Vol 244 (2) ◽  
pp. H247-H252 ◽  
Author(s):  
T. C. Vary ◽  
J. R. Neely

In heart muscle, the intracellular carnitine concentration is approximately 40 times higher than the plasma carnitine concentration, suggesting the existence of an active transport process. At physiological serum carnitine concentrations (44 microM), 80% of total myocardial carnitine uptake occurs via a carrier-mediated transport system. The mechanism of this carrier-mediated transport was studied in isolated perfused rat hearts. Carnitine transport showed an absolute dependence on the extracellular sodium concentration. The rate of carnitine transport was linearly related to the perfusate sodium concentration at every perfusate carnitine concentration examined (15-100 microM). Total removal of extracellular sodium completely abolished the carrier-mediated transport. Decreasing the perfusate potassium concentration from a control of 5.9 to 0.6 mM stimulated transport by 35%, whereas increasing the extracellular potassium concentration from 5.9 to 25 mM reduced transport by 60%. The carrier-mediated transport was inversely proportional to the extracellular potassium concentration. Acetylcholine (10(-3) M), isoproterenol (10(-7) M), or ouabain (10(-3) did not alter the rate of carnitine transport. Addition of tetrodotoxin (10(-5) stimulated carnitine transport by about 40%, while gramicidin S (5 X 10(-6) M) decreased uptake by about 18% relative to control. The data provide evidence that carnitine transport by cardiac cells occurs by a Na+-dependent cotransport mechanism that is dependent on the Na+ electrochemical gradient.


Sign in / Sign up

Export Citation Format

Share Document