carnitine concentration
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Monika Elżbieta Jach ◽  
Konrad Kubiński ◽  
Marek Juda ◽  
Ewa Sajnaga ◽  
Tomasz Baj ◽  
...  

Abstract Background Yarrowia lipolytica is an oleaginous yeast with the ability to grow in a variety of hydrophilic and hydrophobic substrates, including industrial wastes, in which it produces and accumulates various nutrients. Methods The aim of the present study was to examine the presence of free L-carnitine in the biomasses of two Yarrowia lipolytica strains (A-101 and ATCC 9793) growing in biofuel waste and YPD medium. The cultivations of Y. lipolytica were performed in aerobic conditions at different temperatures (20–30°C) and pH values (4.0–7.0) of the media with and without the addition of precursors for L-carnitine production (trimethyllysine, iron, and L-ascorbic acid) in a laboratory scale or other substances (chromium, selenite, or zinc) in a pilot plant scale. Results Both tested Y. lipolytica strains grown in fatty acid-poor YPD medium contained endogenous free L-carnitine in their biomass with a maximum of 22.85 mg/100 g of wet biomass. The addition of L-carnitine precursors to the YPD medium exerted a significant effect on L-carnitine concentration in the yeast biomass, increasing it up to 250%. In turn, the biomass of both tested Y. lipolytica strains cultivated in the biofuel waste, irrespective of the culture conditions, contained below 1 mg of L-carnitine/100 g of wet biomass. However, the supplementation of the culture media with the L-carnitine precursors significantly increased the yield of the yeast biomass by 20–30% in the non-fermentable biofuel waste cultures. Moreover, the addition of chromium (III) chloride into the biofuel waste caused an increase in the free L-carnitine concentration in the yeast biomass up to 2.24 mg/100 g of dry weight. Conclusion Biomass of Y. lipolytica grown in the fat-poor medium contained free L-carnitine, in contrast to the biomass grown in the fat-rich biofuel waste. The very low amounts of L-carnitine in the biomass of Y. lipolytica grown in the crude biofuel waste suggest that the yeast is able to utilize almost the entire pool of free L-carnitine for growth and nutritional biomass production. However, the addition of chromium to the biofuel waste contributed to an increase in L-carnitine concentration in Y. lipolytica biomass.


2021 ◽  
Author(s):  
Monika Elżbieta Jach ◽  
Konrad Kubiński ◽  
Marek Juda ◽  
Ewa Sajnaga ◽  
Tomasz Baj ◽  
...  

Abstract BackgroundYarrowia lipolytica is oleaginous yeast with the ability to grow in a variety of hydrophilic and hydrophobic substrates, including industrial wastes, in which it produces and accumulates various nutrients.MethodsThe aim of the present study was to examine the presence of free L-carnitine in the biomasses of two Yarrowia lipolytica strains (A-101 and ATCC 9793) growing in biofuel waste and YPD medium. The cultivations of Y. lipolytica were performed in aerobic conditions at different temperatures (20-30°C) and pH values (4.0-7.0) of the media with and without the addition of precursors for L-carnitine production (trimethyllysine, iron, and L-ascorbic acid) in a laboratory scale or other substances (chromium, selenite, or zinc) in a pilot plant scale.ResultsBoth tested Y. lipolytica strains grown in fatty acid-poor YPD medium at 20°C and pH 6.0 contained endogenous free L-carnitine in their biomass with a maximum of 22.85 mg/100 g of wet biomass. The addition of L-carnitine precursors to the YPD medium exerted a significant effect on L-carnitine concentration in the yeast biomass, increasing it up to 250%. In turn, the biomass of both tested Y. lipolytica strains cultivated in the biofuel waste, irrespective of the culture conditions, contained below 1 mg of L-carnitine/100 g of wet biomass. However, the supplementation of the culture media with the L-carnitine precursors significantly increased the yield of the yeast biomass by 20-30% in the non-fermentable biofuel waste cultures. Moreover, the addition of chromium (III) chloride into the biofuel waste caused an increase in the free L-carnitine concentration in the yeast biomass up to 2.24 mg/100 g of dry weight.ConclusionBiomass of Y. lipolytica grown in the fatty-poor medium contained free L-carnitine, in contrast to the biomass grown in the fat-rich biofuel waste. The very low amounts of L-carnitine in the biomass of Y. lipolytica grown in the crude biofuel waste suggest that the yeast is able to utilize almost the entire pool of free L-carnitine for growth and nutritional biomass production. However, the addition of chromium to the biofuel waste contributed to an increase in L-carnitine concentration in Y. lipolytica biomass.


2021 ◽  
Author(s):  
Monika Jach ◽  
Konrad Kubiński ◽  
Ewa Sajnaga ◽  
Marek Juda ◽  
Anna Malm

Abstract Background Yarrowia lipolytica is an oleaginous yeast with the ability to grow in a variety of hydrophilic and hydrophobic substrates, including industrial wastes, in which it produces and accumulates various nutrients. Methods The aim of the present study was to examine the presence of free L-carnitine in the biomasses of two Yarrowia lipolytica strains (ATCC 9793 and A-101) growing in YPD medium and biofuel waste. The cultivations of Y. lipolytica were performed in aerobic conditions at different temperatures (20–30°C) and pH values (4.0–7.0) of the media with and without the addition of precursors for L-carnitine production, such us iron, trimethyllysine, and L-ascorbic acid in a laboratory scale or chromium chloride (III) in a pilot plant scale. Results Both tested Y. lipolytica strains grown in fatty acid-poor YPD medium at 20°C and pH 6.0 contained endogenous free L-carnitine in their biomass with a maximum of 22.85 mg/100 g of wet biomass. The addition of L-carnitine precursors to the YPD medium exerted a significant effect on L-carnitine concentration in the yeast biomass, increasing it up to 250%. In turn, the biomass of both tested Y. lipolytica strains cultivated in the biofuel waste, irrespective of the culture conditions, contained below 1 mg of L-carnitine/100 g of wet biomass. However, the supplementation of the culture media with the L-carnitine precursors significantly increased the yield of the yeast biomass by 20–30% in the biofuel waste cultures. Moreover, the addition of chromium(III) chloride into the biofuel waste caused an increase in the free L-carnitine concentration in the yeast biomass up to 2.24 mg/100 g of dry weight. Conclusion Biomass of Y. lipolytica grown in the free fat medium contained free L-carnitine, in contrast to the biomass grown in the fat-rich biofuel waste. The very low amounts of L-carnitine in the biomass of Y. lipolytica grown in the crude biofuel waste suggest that the yeast is able to utilize almost the entire pool of free L-carnitine for growth and nutritional biomass production. However, the addition of chromium to the biofuel waste contributed to an increase in L-carnitine concentration in Y. lipolytica biomass.


2021 ◽  
Vol 97 ◽  
pp. 103343
Author(s):  
Francesca Arfuso ◽  
Claudia Giannetto ◽  
Elisabetta Giudice ◽  
Francesco Fazio ◽  
Giuseppe Piccione

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2645 ◽  
Author(s):  
Satoshi Shimizu ◽  
Hiroyuki Takashima ◽  
Ritsukou Tei ◽  
Tetsuya Furukawa ◽  
Makiyo Okamura ◽  
...  

Background: Carnitine deficiency is common in patients on dialysis. Serum free carnitine concentration is significantly lower in patients on hemodialysis (HD) than in healthy individuals. However, there are few reports on serum free carnitine concentration in patients on peritoneal dialysis (PD). Methods: We examined serum concentrations of total, free, and acylcarnitine and the acylcarnitine/free carnitine ratio in 34 PD and 34 age-, sex-, and dialysis duration-matched HD patients. We investigated the prevalence of carnitine deficiency and clinical factors associated with carnitine deficiency in the PD group. Results: Prevalence of carnitine deficiency was 8.8% in the PD group and 17.7% in the HD group (p = 0.283). High risk of carnitine deficiency was found in 73.5% of the PD group and 76.4% of the HD group (p = 0.604). Carnitine insufficiency was found in 82.3% of the PD group and 88.2% of HD group (p = 0.733). Multivariate analysis revealed that duration of dialysis and age were independent predictors of serum free carnitine level in the PD group. Conclusions: The prevalence of carnitine deficiency, high risk of carnitine deficiency, and carnitine insufficiency in PD patients was 8.8%, 73.5%, and 82.3%, respectively. These rates were comparable to those in patients on HD.


Author(s):  
Satoshi Shimizu ◽  
Hiroyuki Takashima ◽  
Ritsukou Tei ◽  
Tetsuya Furukawa ◽  
Makiyo Okamura ◽  
...  

Background: Carnitine deficiency is common in patients on dialysis. Serum free carnitine concentration is significantly lower in patients on hemodialysis (HD) than in healthy individuals. However, there are few reports on serum free carnitine concentration in patients on peritoneal dialysis (PD). Methods: We examined serum concentrations of total, free, and acylcarnitine and the acylcarnitine/free carnitine ratio in 34 PD and 34 age-, sex-, and dialysis duration-matched HD patients. We investigated the prevalence of carnitine deficiency and clinical factors associated with carnitine deficiency in the PD group. Results: Prevalence of carnitine deficiency was 8.8% in the PD group and 14.7% in the HD group (P = 0.45). High risk of carnitine deficiency was found in 79.4% of the PD group and 85.3% of the HD group (P = 0.52). Carnitine insufficiency was found in 82.3% of the PD group and 88.2% of HD group (P = 0.49). Multivariate analysis revealed that duration of dialysis and age were independent predictors of serum free carnitine level in the PD group. Conclusions: The prevalence of carnitine deficiency, high risk of carnitine deficiency, and carnitine insufficiency in PD patients was 8.8%, 79.4%, and 82.3%, respectively. These rates were comparable to those in patients on HD.


2019 ◽  
Vol 122 (6) ◽  
pp. 625-638 ◽  
Author(s):  
Jia-Min Li ◽  
Ling-Yu Li ◽  
Yu-Xue Zhang ◽  
Zhe-Yue Jiang ◽  
Samwel M. Limbu ◽  
...  

Abstractl-Carnitine is essential for mitochondrial β-oxidation and has been used as a lipid-lowering feed additive in humans and farmed animals. d-Carnitine is an optical isomer of l-carnitine and dl-carnitine has been widely used in animal feeds. However, the functional differences between l- and d-carnitine are difficult to study because of the endogenous l-carnitine background. In the present study, we developed a low-carnitine Nile tilapia model by treating fish with a carnitine synthesis inhibitor, and used this model to investigate the functional differences between l- and d-carnitine in nutrient metabolism in fish. l- or d-carnitine (0·4 g/kg diet) was fed to the low-carnitine tilapia for 6 weeks. l-Carnitine feeding increased the acyl-carnitine concentration from 3522 to 10 822 ng/g and alleviated the lipid deposition from 15·89 to 11·97 % in the liver of low-carnitine tilapia. However, as compared with l-carnitine group, d-carnitine feeding reduced the acyl-carnitine concentration from 10 822 to 5482 ng/g, and increased lipid deposition from 11·97 to 20·21 % and the mRNA expression of the genes involved in β-oxidation and detoxification in the liver. d-Carnitine feeding also induced hepatic inflammation, oxidative stress and apoptosis. A metabolomic investigation further showed that d-carnitine feeding increased glycolysis, protein metabolism and activity of the tricarboxylic acid cycle and oxidative phosphorylation. Thus, l-carnitine can be physiologically utilised in fish, whereas d-carnitine is metabolised as a xenobiotic and induces lipotoxicity. d-Carnitine-fed fish demonstrates increases in peroxisomal β-oxidation, glycolysis and amino acid degradation to maintain energy homeostasis. Therefore, d-carnitine is not recommended for use in farmed animals.


Renal Failure ◽  
2018 ◽  
Vol 40 (1) ◽  
pp. 196-200 ◽  
Author(s):  
Anna Suzuki ◽  
Yukinao Sakai ◽  
Kazumasa Hashimoto ◽  
Hirokazu Osawa ◽  
Shuichi Tsuruoka

Author(s):  
Magdalena Přibilová ◽  
Pavel Horký ◽  
Lenka Urbánková ◽  
Pavel Nevrkla ◽  
Jiří Skládanka

The purpose of the project was to determine impact of added L‑carnitine in feed ration on quality of Duroc boar ejaculate during the summer period (June–September). Temperature in the stable achieved up to 29.9 °C. For the experiment was chosen 24 Duroc boars. Boars were divided into 2 groups: The control group of boars (n = 12) was fed by the basic feed mixture only. The experimental group of boars (n = 12) was supplemented by 500 mg of L‑carnitine/kg of the feed ration. Ejaculate was collected once a week. Monitored parameters were: volume of ejaculate, concentration of sperm, total sperm count, motility of sperm and percentage of morphologically abnormal sperm. L‑carnitine concentration in the ejaculate was monitored as well. Results of the experiment show that supplementation of 500 g of L‑carnitine into boar ration had a positive impact on sperm motility, significant difference between the boar groups by 8.54 % (P < 0.05) and on decreased morphologically abnormal sperm, significant difference between groups by 12.6 % (P < 0.05), and also significant difference in experimental group during the monitoring by 4.06 % (P < 0.05). After biochemical analysis have been found a statistically significant increase in concentration of L‑carnitine in the ejaculate of the experimental group (up to 21.1 μg/ml) and a statistically significant difference between groups (22.0 μg/ml), (P < 0.05).


Sign in / Sign up

Export Citation Format

Share Document