Characterization of the stimulus-induced release of immunoreactive substance P from the myenteric plexus of the guinea-pig small intestine

1984 ◽  
Vol 297 (1) ◽  
pp. 127-136 ◽  
Author(s):  
P. Holzer
1979 ◽  
Vol 206 (1163) ◽  
pp. 191-208 ◽  

Extracellular and intracellular recordings were made in vitro from single neurons of the myenteric plexus of the guinea-pig small intestine. Synthetic substance P was applied to the neurons by means of the perfusing solution or by electrophoresis from micropipettes. Extracellular recording showed that substance P (100 pM-30 nM), applied by perfusion, increased the firing rate of myenteric neurons. Intracellular recording indicated that perfusion with substance P caused a dose-dependent membrane depolarization which was unaffected by hexamethonium, hyoscine, naloxone or baclofen. The depolarization was also evoked by electrophoretic application of substance P. It was associated with an increase in membrane resistance, augmented by membrane depolarization and reduced by membrane hyperpolarization. The relation between the substance P reversal potential and the logarithm of the extracellular potassium concentration was linear with a slope of 54 mV/log 10 [K + ], which indicates that substance P inactivates the resting potassium conductance of the myenteric neurons. This effect on ion conductance is the same as that of an unknown substance that mediates slow synaptic excitations with the myenteric plexus.


1984 ◽  
Vol 246 (5) ◽  
pp. G509-G514 ◽  
Author(s):  
D. H. Teitelbaum ◽  
T. M. O'Dorisio ◽  
W. E. Perkins ◽  
T. S. Gaginella

The peptides caerulein, neurotensin, somatostatin, and substance P modulate the activity of intestinal neurons and alter gut motility. We examined the effects of these peptides on acetylcholine release from the myenteric plexus and intestinal contractility in vitro. Caerulein (1 X 10(-9) M), neurotensin (1.5 X 10(-6) M), and substance P (1 X 10(-7) M) significantly enhanced the release of [3H]acetylcholine from the myenteric plexus of the guinea pig ileum. This effect was inhibited by tetrodotoxin (1.6 X 10(-6) M). Somatostatin (10(-6) M) inhibited caerulein- and neurotensin-evoked release of acetylcholine but did not inhibit release induced by substance P. Caerulein, neurotensin, and substance P caused contraction of the guinea pig ileal longitudinal muscle. Somatostatin inhibited the contractions induced by caerulein and neurotensin. In contrast, substance P-induced contraction was not inhibited significantly by somatostatin. Thus, in the guinea pig ileum, caerulein-, neurotensin-, and substance P-induced contractility is due, at least in part, to acetylcholine release from the myenteric plexus. The ability of somatostatin to inhibit peptide-induced contractility is selective, and its mechanism may be attributed to inhibition of acetylcholine release.


1989 ◽  
Vol 256 (3) ◽  
pp. G540-G545 ◽  
Author(s):  
P. Holzer

Isolated segments of the guinea pig small intestine were used to examine the transmitter circuitry of the neural pathways subserving the ascending enteric reflex (AER) contraction of the circular muscle. Inflation of an intraluminal balloon provided the distension stimulus for the AER. The ascending contraction was reduced to 5% of its original amplitude by atropine and to 10% by hexamethonium, which indicates that cholinergic interneurons and cholinergic motor neurons constitute the main AER pathway. However, in the continued presence of atropine or hexamethonium for 60 min, the AER recovered to approximately 30% of its original amplitude. The atropine-resistant AER was blocked by hexamethonium and the tachykinin antagonist spantide [( D-Arg1,D-Trp7,9, Leu11]-substance P) suggesting that it involved cholinergic interneurons and tachykinin-utilizing motor neurons. The hexamethonium-resistant AER was abolished by atropine but left unaffected by spantide, suggesting the participation of as yet unidentified interneurons and cholinergic motor neurons. These findings demonstrate that the AER is mediated by multiple neural pathways with different transmitters and that adaptive interactions between these pathways take place after blockade of one of its neurotransmitters systems.


Sign in / Sign up

Export Citation Format

Share Document