The effects of nerve section on the non-quantal release of ACh from the motor nerve terminal

1986 ◽  
Vol 365 (2) ◽  
pp. 289-292 ◽  
Author(s):  
Elis F. Stanley ◽  
Daniel B. Drachman
1999 ◽  
Vol 81 (3) ◽  
pp. 1135-1146 ◽  
Author(s):  
G. T. Macleod ◽  
L. Farnell ◽  
W. G. Gibson ◽  
M. R. Bennett

Quantal secretion and nerve-terminal cable properties at neuromuscular junctions in an amphibian ( Bufo marinus). The effect of a conditioning depolarizing current pulse (80–200 μs) on quantal secretion evoked by a similar test pulse at another site was examined in visualized motor-nerve terminal branches of amphibian endplates ( Bufo marinus). Tetrodotoxin (200 nM) and cadmium (50 μM) were used to block voltage-dependent sodium and calcium conductances. Quantal release at the test electrode was depressed at different distances (28–135 μm) from the conditioning electrode when the conditioning and test pulses were delivered simultaneously. This depression decreased when the interval between conditioning and test current pulses was increased, until, at an interval of ∼0.25 ms, it was negligible. At no time during several thousand test-conditioning pairs, for electrodes at different distances apart (28–135 μm) on the same or contiguous terminal branches, did the electrotonic effects of quantal release at one electrode produce quantal release at the other. Analytic and numerical solutions were obtained for the distribution of transmembrane potential at different sites along terminal branches of different lengths for current injection at a point on a terminal branch wrapped in Schwann cell, in the absence of active membrane conductances. Solutions were also obtained for the combined effects of two sites of current injection separated by different time delays. This cable model shows that depolarizing current injections of a few hundred microseconds duration produce hyperpolarizations at ∼30 μm beyond the site of current injection, with these becoming larger and occurring at shorter distances the shorter the terminal branch. Thus the effect of a conditioning depolarizing pulse at one site on a subsequent test pulse at another more than ∼30 μm away is to substantially decrease the absolute depolarization produced by the latter, provided the interval between the pulses is less than a few hundred microseconds. It is concluded that the passive cable properties of motor nerve terminal branches are sufficient to explain the effects on quantal secretion by a test electrode depolarization of current injections from a spatially removed conditioning electrode.


Neuron ◽  
1989 ◽  
Vol 3 (6) ◽  
pp. 677-688 ◽  
Author(s):  
Mark Rich ◽  
Jeff W. Lichtman

1990 ◽  
Vol 14 ◽  
pp. 227
Author(s):  
J TOMAS ◽  
R FENOLL ◽  
J BATLLE ◽  
M SANTAFE ◽  
V PIERA ◽  
...  

1986 ◽  
Vol 103 (2) ◽  
pp. 521-534 ◽  
Author(s):  
J D Black ◽  
J O Dolly

The labeling patterns produced by radioiodinated botulinum neurotoxin (125I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. 125I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. 125I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. Although 125I-BoNT type A interacts specifically with developing terminals of newborn rats, the unmyelinated plasma membrane of the nerve trunk is not labeled, indicating that the acceptors are unique components restricted to the nerve terminal area. BoNT types A and B have distinct acceptors on the terminal membrane. Having optimized the conditions for saturation of these binding sites and calibrated the autoradiographic procedure, we found the densities of the acceptors for types A and B to be approximately 150 and 630/micron 2 of membrane, respectively. It is proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.


1981 ◽  
Vol 221 (2) ◽  
pp. 382-386 ◽  
Author(s):  
Ira S. Cohen ◽  
William Van Der Kloot ◽  
Stuart B. Barton

2020 ◽  
Vol 40 (18) ◽  
pp. 3504-3516 ◽  
Author(s):  
Scott P. Ginebaugh ◽  
Eric D. Cyphers ◽  
Viswanath Lanka ◽  
Gloria Ortiz ◽  
Evan W. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document