current injection
Recently Published Documents


TOTAL DOCUMENTS

1532
(FIVE YEARS 278)

H-INDEX

67
(FIVE YEARS 6)

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8138
Author(s):  
Faa-Jeng Lin ◽  
Syuan-Yi Chen ◽  
Wei-Ting Lin ◽  
Chih-Wei Liu

An online parameter estimation methodology using the d-axis current injection, which can estimate the distorted voltage of the current-controlled voltage source inverter (CCVSI), the varying dq-axis inductances, and the rotor flux, is proposed in this study for interior permanent magnet synchronous motor (IPMSM) drives in the constant torque region. First, a d-axis current injection-based parameter estimation methodology considering the nonlinearity of a CCVSI is proposed. Then, during current injection, a simple linear model is developed to model the cross- and self-saturation of the dq-axis inductances. Since the d-axis unsaturated inductance is difficult to obtain by merely using the recursive least square (RLS) method, a novel tuning method for the d-axis unsaturated inductance is proposed by using the theory of the maximum torque per ampere (MTPA) with the combination of the RLS method. Moreover, to improve the bandwidth of the current loop, an intelligent proportional-integral-derivative (PID) neural network controller with improved online learning algorithm is adopted to replace the traditional PI controller. The estimated the dq-axis inductances and the rotor flux are adopted in the decoupled control of the current loops. Finally, the experimental results at various operating conditions of the IPMSM in the constant torque region are given.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8126
Author(s):  
Daisuke Iioka ◽  
Takahiro Fujii ◽  
Toshio Tanaka ◽  
Tsuyoshi Harimoto ◽  
Junpei Motoyama ◽  
...  

In this study, we have proposed a novel current injection determination method that improves the voltage unbalance based on the unbalanced line impedance in a distribution network with a large-capacity PV system. An increase in the unbalance of the distribution line voltage was observed owing to a large-scale reverse power flow. To visualize this phenomenon, the P-V curves were derived for each phase to indicate the increase in the voltage unbalance with respect to the reverse power flow. Based on the derived P-V curves, the effect of a current unbalance on the voltage unbalance was investigated. It was clarified that there is a current unbalance that can improve the voltage unbalance even if the line impedance is unbalanced. In other words, the current unbalance that can theoretically make the voltage unbalance zero could be expressed in terms of the symmetrical components of unbalanced line impedance. As an application of the proposed method, the effect of the mitigation of voltage unbalance was demonstrated by controlling single-phase reactors, whose numbers were determined by using the relationship between the unbalanced line current and unbalanced line impedance.


2021 ◽  
Author(s):  
Guanlong Jia ◽  
Mingshuo Li ◽  
Xiaotong Su ◽  
Song Tang ◽  
Xiaoming Liu ◽  
...  

2021 ◽  
Author(s):  
Zhen-Ning Zhang ◽  
you-zeng hao ◽  
Ke Yang ◽  
Chun-Guang Ma ◽  
Jin-Long Xiao ◽  
...  

2021 ◽  
Vol 11 (21) ◽  
pp. 10437
Author(s):  
Boštjan Polajžer ◽  
Bojan Grčar ◽  
Jernej Černelič ◽  
Jožef Ritonja

This paper analyzes the influence of inverter-interfaced distributed generations’ (IIDGs) response during transmission network faults. The simplest and safest solution is to switch IIDGs off during network faults without impacting the network voltages. A more elaborate and efficient concept, required by national grid codes, is based on controlling the IIDGs’ currents, involving positive- and negative-sequence voltage measured at the connection point. In this way the magnitude and phase of the injected currents can be adjusted, although the generated power will depend on the actual line voltages at the connection point. Therefore, an improved concept is proposed to adjust IIDGs’ fault current injection through the required active and reactive power, employing the same voltage characteristics. The proposed, i.e., power-based concept, is more definite than the current-based one, since the required power will always be generated. The discussed concepts for the fault current injection by IIDGs were tested in different 110-kV networks with loop and radial topologies, and for different short-circuit capabilities of the aggregated network supply. Based on extensive numerical calculations, the power-based concept during transmission networks faults generates more reactive power compared to the current-based concept. However, the voltage support by IIDGs during transmission networks faults, regardless of the concept being used, is influenced mainly by the short-circuit capability of the aggregated network supply. As regards distance protection operation, it is influenced additionally by the network topology, i.e., in radial network topology, the remote relay’s operation can be delayed due to a largely seen impedance.


2021 ◽  
Vol 33 (45) ◽  
pp. 2170353
Author(s):  
Seungmo Yang ◽  
Kyoung‐Woong Moon ◽  
Tae‐Seong Ju ◽  
Changsoo Kim ◽  
Hyun‐Joong Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document