Inner cutoff scale of flame surface wrinkling in turbulent premixed flames

1995 ◽  
Vol 103 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
O Gülder
Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26 ◽  
Author(s):  
Shokri Amzin ◽  
Mariusz Domagała

In turbulent premixed flames, for the mixing at a molecular level of reactants and products on the flame surface, it is crucial to sustain the combustion. This mixing phenomenon is featured by the scalar dissipation rate, which may be broadly defined as the rate of micro-mixing at small scales. This term, which appears in many turbulent combustion methods, includes the Conditional Moment Closure (CMC) and the Probability Density Function (PDF), requires an accurate model. In this study, a mathematical closure for the conditional mean scalar dissipation rate, <Nc|ζ>, in Reynolds, Averaged Navier–Stokes (RANS) context is proposed and tested against two different Direct Numerical Simulation (DNS) databases having different thermochemical and turbulence conditions. These databases consist of lean turbulent premixed V-flames of the CH4-air mixture and stoichiometric turbulent premixed flames of H2-air. The mathematical model has successfully predicted the peak and the typical profile of <Nc|ζ> with the sample space ζ and its prediction was consistent with an earlier study.


2017 ◽  
Vol 36 (2) ◽  
pp. 1817-1825 ◽  
Author(s):  
Johannes Sellmann ◽  
Jiawei Lai ◽  
Andreas M Kempf ◽  
Nilanjan Chakraborty

2007 ◽  
Vol 31 (1) ◽  
pp. 1319-1326 ◽  
Author(s):  
Johan Hult ◽  
Sara Gashi ◽  
Nilanjan Chakraborty ◽  
Markus Klein ◽  
Karl W. Jenkins ◽  
...  

Author(s):  
Kazuya Tsuboi ◽  
Shinnosuke Nishiki ◽  
Tatsuya Hasegawa

An analysis of local flame area was performed using DNS (Direct Numerical Simulation) databases of turbulent premixed flames with different density ratios and with different Lewis numbers. Firstly, a local flame surface at a prescribed progress variable was identified as a local three-dimensional polygon. And then the polygon was divided into some triangles and local flame area was evaluated. The turbulent burning velocity was evaluated using the ratio of the area of turbulent flame to that of planar flame and compared with the turbulent burning velocity obtained by the reaction rate.


Sign in / Sign up

Export Citation Format

Share Document