Age of Kōko Seamount, Emperor Seamount chain

1973 ◽  
Vol 17 (2) ◽  
pp. 411-415 ◽  
Author(s):  
David A. Clague ◽  
G. Brent Dalrymple
2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Aimei Zhu ◽  
Xuefa Shi ◽  
Dirk Nürnberg ◽  
...  

Investigating the composition and distribution of pelagic marine sediments is fundamental in the field of marine sedimentology. The spatial distributions of surface sediment are unclear due to limited investigation along the Emperor Seamount Chain of the North Pacific. In this study, a suite of sedimentological and geochemical proxies were analyzed, including the sediment grain size, organic carbon, CaCO3, major and rare earth elements of 50 surface sediment samples from the Emperor Seamount Chain, spanning from ∼33°N to ∼52°N. On the basis of sedimentary components, we divide them into three Zones (I, II, and III) spatially with distinct features. Sediments in Zone I (∼33°N–44°N) and Zone III (49.8°N–53°N) are dominated by clayey silt, and mainly consist of sand and silty sand in Zone II. The mean grain size of the sortable silt shows that the hydrodynamic condition in the study area is significantly stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500 m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth of 4,000 m is the carbonate compensation depth of the study area. Strong positive correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk sediments indicate pronounced contributions of terrigenous materials from surrounding continent mass to the study area. Furthermore, the eolian dust makes contributions to the composition of bulk sediments as confirmed by rare earth elements. There is no significant correlation between grain size and major and minor elements, which indicates that the sedimentary grain size does not exert important effects on terrigenous components. There is significant negative δCe and positive δEu anomalies at all stations. The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal of seawater. The positive Eu anomaly indicates widespread volcanism contributions to the study area from active volcanic islands arcs around the North Pacific. The relative contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water depth in the study area.


1980 ◽  
Vol 70 (4) ◽  
pp. 1161-1169
Author(s):  
K. Furukawa ◽  
J. F. Gettrust ◽  
L. W. Kroenke ◽  
J. F. Campbell

abstract Inversion of an 80-km-long reversed seismic refraction profile near the northwestern flank of Kōko Seamount indicates that the crust adjacent to the southern end of the Emperor Seamount chain is approximately 9-km thick with no dip in the refracting horizons. These data require positive P-velocity gradients in the crust and upper mantle to fit the observed amplitudes. The crustal refractor P velocities and crustal thickness found are in general agreement with those found previously for the Emperor chain and near the Hawaiian Ridge. It is inferred from our data that the tectonic mechanism which created the Emperor and Hawaiian chains was highly localized.


Geotectonics ◽  
2006 ◽  
Vol 40 (6) ◽  
pp. 467-480 ◽  
Author(s):  
E. V. Verzhbitsky ◽  
M. V. Kononov ◽  
A. F. Byakov ◽  
V. P. Dulub

2020 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Xuefa Shi ◽  
Lester Lembke-Jene ◽  
Dirk Nürnberg ◽  
...  

<p>The Emperor Seamount chain is located in the North Pacific Ocean and beneath the Northern Westerly wind belt. It extends from the subtropical to subarctic North Pacific oceans between 30°N-50°N. Modern observations have shown this region has complex physical oceanic processes, including the Kuroshio Extension, the Oyashio Current, the polar front and the subarctic front. A large amount of dust from the central Asian continent is delivered to this area, which affects the regional marine ecosystem and the global carbon cycle. Due to the lack of sediments from the Emperor Seamount chain, few studies have examined the composition of surface sediments in this ocean realm. On the basis of 50 samples collected during the SO264 Expedition in 2018 using multicorers, we investigate the spatial distributions of sediment grainsize, total organic carbon, CaCO<sub>3</sub> and major and minor elements in surface sediments of this ocean realm. Our data show that the detritus sediments mainly consist of siltly sand and clayey silt with more coarse fractions between ~45°N and 48°N, which has strong negative correlations with water depth. The content of CaCO<sub>3</sub> varies between 0.04% and 83.67% with higher values at the south of 48°N. The TOC content ranges between 0.07% and 1.36% with lower values (<0.3%) occurring at the north of ~45°N. The concentration of ∑REEs ranges from 31 ppm to 136 ppm with lower values between ~45° N and 48°N. There is significant positive Eu anomaly at all stations, indicating widespread occurrence of volcanic detritus. A significant negative correlation between sediment grainsize and ∑REEs and some lithophile elements, such as Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, Th, REEs, etc., indicates a strong effect of sediment grainsize on sediment geochemical composition. A strong negative correlation between Al and CaCO<sub>3</sub> suggests contrasting sources, such as terrigenous vs biogenic sources, respectively. Our data confirms the contributions of terrigenous, volcanic and biogenic materials to the bulk sediment with contrasting spatial distribution along the Emperor Seamount Chain.</p><p>Note: This study was supported by the National Natural Science Foundation of China (Grant No.41876065, U1606401) and National Program on Global Change and Air-Sea Interaction(GASI-GEOGE-04). </p>


Sign in / Sign up

Export Citation Format

Share Document