Finite elements for determination of crack tip elastic stress intensity factors

1971 ◽  
Vol 3 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Dennis M. Tracey
1980 ◽  
Vol 47 (4) ◽  
pp. 795-800 ◽  
Author(s):  
H. P. Rossmanith

Correction methods for the determination of dynamic stress-intensity factors from isochromatic crack-tip stress patterns are developed within the framework of a Westergaard-type stress-function analysis where higher-order terms of the series expansions of the stress functions are retained. The addition σox to the extensional stress σx, is regarded as a first correction term, and the far-field correction term which is proportional to r1/2 is referred to as the β-correction. The β-term represents effects that are due to particular loading systems and situations including finite specimen boundaries. The associated method to determine K can be termed a three-parameter method since it contains K, α, and β as parameters. The correction methods, i.e., velocity correction and higher-order term corrections, permit modification of the “static” crack velocity versus stress-intensity factor (c-K) relationship by correcting the static K for the influence of crack speed and higher-order terms. The results show that both corrections assist the interpretation of current photoelastic c-K-data even though the crack speeds do not exceed one third of the shear wave speed.


1993 ◽  
Vol 60 (1) ◽  
pp. 29-32 ◽  
Author(s):  
V. A. Lubarda

Precise estimates of the elastic stress intensity factors for the Griffith and edge cracks are made by using one convenient representation of the J-integral and asymptotic crack-tip fields, without recourse to the solutions of corresponding boundary value problems.


2017 ◽  
Vol 48 (4) ◽  
pp. 377-398
Author(s):  
Svyatoslav Igorevich Eleonskii ◽  
Igor Nikolaevich Odintsev ◽  
Vladimir Sergeevich Pisarev ◽  
Stanislav Mikhailovich Usov

Sign in / Sign up

Export Citation Format

Share Document