Application of the body force method to the calculation of stress intensity factors for a crack in the arbitrarily shaped plate

1978 ◽  
Vol 10 (3) ◽  
pp. 497-513 ◽  
Author(s):  
Yukitaka Murakami
Author(s):  
Kazuhiro Oda ◽  
Nao-Aki Noda

In this study, the stress intensity factor (SIF) of an interface kinked crack is analyzed by the singular integral equation of the body force method. The problem can be expressed by distributing the body force doublets of the tension and shear types along all the boundaries of the kinked and interface crack parts. The SIFs can be obtained directly from the densities of the body force doublets at the crack tips. Although the problem has already been calculated using the crack connection model, the accuracy of the analysis has not been clarified. From the analysis results in this study, it can be seen that the SIFs calculated by the crack connection model have a nonnegligible error, and the present method gives more accurate results. The advantage of the present method is that the SIFs of the kinked and the interface crack tips can be obtained at the same time with high accuracy.


2010 ◽  
Vol 452-453 ◽  
pp. 405-408 ◽  
Author(s):  
Akihide Saimoto ◽  
Fumitaka Motomura ◽  
Hironobu Nisitani

Practically exact solutions of stress intensity factor for several two-dimensional standard specimens were calculated and shown in numeric tables. The solutions were confirmed to converge until 6 significant figures through a systematical computation of discretization analysis. The convergence analyses were carried out by using a general purpose program based on a body force method.


2007 ◽  
Vol 353-358 ◽  
pp. 2449-2452
Author(s):  
Naoaki Noda ◽  
Chun Hui Xu

In this study, a rectangular interfacial crack in three dimensional bimaterials is analyzed. First, the problem is formulated as a system of singular integral equations on the basis of the body force method. In the numerical analysis, unknown body force densities are approximated by the products of the fundamental density functions and power series, where the fundamental density functions are chosen to express a two-dimensional interface crack exactly. The calculation shows that the present method gives smooth variations of stress intensity factor along the crack front for various aspect ratios. The present method gives rapidly converging numerical results and highly satisfied boundary conditions throughout the crack boundary. It is found that the stress intensity factors K1 and K2 are determined by bimaterials constant e alone, independent of elastic modulus ratio and Poisson's ratio.


1995 ◽  
Vol 117 (3) ◽  
pp. 213-221 ◽  
Author(s):  
D.-H. Chen ◽  
H. Nisitani ◽  
K. Mori

In this paper, the surface crack problem in a cylinder subjected to internal pressure is solved. The analysis is based on the body force method, but it is different from the conventional body force method in the following point. That is, the body forces to be distributed continuously on the assumed boundaries in an infinite body are approximated by some discrete point forces acting on the outside of the assumed boundaries. By using this method combined with the resultant force boundary conditions, solutions with high accuracy are obtained.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Shinji Konosu

Assessment of multiple volumetric flaws is one of the most common problems relating to pressure vessels and piping components. Under the current fitness for service rules, such as ASME, BS, and so on, multiple volumetric flaws are usually recharacterized as an enveloping volumetric flaw (defined as a single larger volumetric flaw) as well as multiple cracklike flaws, following their assessment rules. However, the rules proposed in their codes will not often agree and their justification is unknown. Furthermore, they can provide unrealistic assessment in some cases. In this paper, the interaction between two differently sized nonaligned volumetric flaws such as local thin areas is clarified by applying the body force method. Unlike multiple cracklike flaws, the effect of biaxial stresses on the interaction is evident. Based on the interaction that indicates the magnification and shielding effects and reference stress solutions, a new procedure for multiple volumetric flaws is proposed for assessing the flaws in the p-M (pressure-moment) diagram, which is a simple assessment procedure for vessels with volumetric flaws.


1988 ◽  
Vol 54 (508) ◽  
pp. 2093-2098
Author(s):  
Hironobu NISITANI ◽  
Hiroshi NOGUCHI ◽  
Dai-heng CHEN ◽  
Hiroaki MINE

Sign in / Sign up

Export Citation Format

Share Document