An equivalent domain integral method for computing crack-tip integral parameters in non-elastic, thermo-mechanical fracture

1987 ◽  
Vol 26 (6) ◽  
pp. 851-867 ◽  
Author(s):  
G.P. Nikishkov ◽  
S.N. Atluri
2016 ◽  
Vol 94 ◽  
pp. 207-229 ◽  
Author(s):  
Hongjun Yu ◽  
Jie Wang ◽  
Takahiro Shimada ◽  
Huaping Wu ◽  
Linzhi Wu ◽  
...  

2008 ◽  
Vol 273-276 ◽  
pp. 808-813 ◽  
Author(s):  
Janja Kramer ◽  
Renata Jecl ◽  
Leo Škerget

A numerical approach to solve a problem of combined heat and mass transfer in porous medium saturated with compressible fluid is presented. Transport phenomena in porous media is described using the modified Navier-Stokes equations, where for the governing momentum equation the Brinkman extended Darcy formulation is used. Governing equations are solved with the Boundary Domain Integral Method, which is an extension of classical Boundary Element Method.


2013 ◽  
Vol 275-277 ◽  
pp. 242-246
Author(s):  
Bhimsen Karadin ◽  
Nilesh Satonkar ◽  
Sunil Bhat

Stress intensity factor (K) is the measure of severity of stress at the crack tip. When K exceeds the critical limit (i.e., the material fracture toughness), the crack grows. K is valid in brittle materials (LEFM) and to some extent in ductile materials also provided there is small scale yielding (SSY) at the crack tip. The paper reviews the numerical methodology to obtain KI of ductile, Mode I cracked, CT and SENB test specimens in LEFM and SSY regimes with the help of J integral method. The numerical values are successfully compared with the theoretical values.


Sign in / Sign up

Export Citation Format

Share Document