residual strain
Recently Published Documents


TOTAL DOCUMENTS

854
(FIVE YEARS 127)

H-INDEX

34
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Neha Yadav ◽  
Karol Wachtarczyk ◽  
Paweł Gąsior ◽  
Ralf Schledjewski ◽  
Jerzy Kaleta

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Qian Wang ◽  
Jun Wang ◽  
Xiumei Zhong ◽  
Haiping Ma ◽  
Xiaowei Xu

Metastable loess soils can deform, inducing geological and engineering disasters. Therefore, the behavior of the loess under dynamic load is gaining massive attention from researchers to improve the strength of the soils. Fly ash mixed with loess can improve strength and reduce construction costs and environmental pollution. Moreover, it has strong economic and social benefits. This paper investigates the influence of fly ash on the dynamic properties of the modified loess through a series of dynamic triaxial tests of the fly ash modified loess with different fly ash contents. The treated soil samples were prepared using a static compaction method in both ends and cured for 28 days. The dynamic shear modulus ratio, the damping ratio, and the dynamic residual strain of the modified loess were analyzed. The variation characteristics of the dynamic shear modulus ratio and damping ratio with the dynamic shear strain of the fly ash modified loess were obtained. The effect of fly ash content on the dynamic nonlinear parameters of the modified loess was also investigated. In addition, the relationship between the dynamic residual strain and the fly ash content was discussed. The results show that the dynamic shear modulus ratio of fly ash modified loess decreases nonlinearly with the increase in the dynamic shear strain. However, the attenuation rate difference of the curves is small. The damping ratio increases gradually with increasing dynamic shear strain. Under a certain dynamic shear strain level, the damping ratio decreases with the increase in the fly ash content. The dynamic residual strain increases with the increase in the dynamic stress. However, it decreases with the increase in the fly ash content. When the fly ash content is between 10% and 20%, the dynamic residual strain of fly ash modified loess is reduced rapidly. However, when the fly ash content exceeds 20%, the dynamic residual strain decreases slowly. The fly ash content of 20% could be suggested as an optimal content for seismic resistance of the loess foundation.


Author(s):  
N. H. Faisal ◽  
R. Ahmed ◽  
A. K. Prathuru ◽  
A. Paradowska ◽  
T. L. Lee

Abstract Background During thermal spray coating, residual strain is formed within the coating and substrates due to thermo-mechanical processes and microstructural phase changes. Objective This paper provides a comprehensive guide to researchers planning to use neutron diffraction technique for thermal spray coatings, and reviews some of these studies. Methods ENGIN-X at the ISIS spallation source is a neutron diffractometer (time-of-flight) dedicated to materials science and engineering with high resolution testing. The focus is on the procedure of using ENGIN-X diffractometer for thermal spray coatings with a view that it can potentially be translated to other diffractometers. Results Number of studies involving neutron diffraction analysis in thermal spray coatings remain limited, partly due to limited number of such strain measurement facilities globally, and partly due to difficulty is applying neutron diffraction analysis to measure residual strain in the thermal spray coating microstructure. Conclusions This technique can provide a non-destructive through-thickness residual strain analysis in thermally sprayed components with a level of detail not normally achievable by other techniques. Neutron sources have been used to measure strains in thermal spray coatings, and here, we present examples where such coatings have been characterised at various neutron sources worldwide, to study residual strains and microstructures. Graphic Abstract


2021 ◽  
Vol 11 (21) ◽  
pp. 10247
Author(s):  
Bo-Hun Choi ◽  
Dae-Cheol Seo ◽  
Yong-Seok Kwon ◽  
Il-Bum Kwon

An optical-fiber-embedded composite cylinder was fabricated using the filament winding process with an interval of 12 mm in the longitudinal direction of the cylinder. The optical fiber was wound 160 turns around the cylinder, and the straight length was about 125 m. After a total of twelve impact events of 5, 10, 15, and 20 J, the residual strain in the cylinder was measured using the proposed time differential BOCDA sensor system. This method makes the traditionally used optical delay unnecessary while increasing the degrees of freedom of using the modulation rate, which determines the spatial resolution of this measurement system. The modulation rates of optical light in the system were applied up to 16 Gbps, which is an eight-fold increase compared to our previous experiments. Damage maps were obtained by mapping the measured residual strain onto the structure of the cylinder, and compared using three spatial resolutions of 20, 10, and 6.25 mm. In the measured damage map, expansion deformation due to impact was measured at all impact points, and the impact location on the map and the actual location on the cylinder were exactly the same. The map measured from the composite showed a clear point-symmetrical shape with an increase in sharpness as the measurement resolution increased. At the highest resolution, material expansion and compression were observed to alternate with respect to the center of impact, like the surface deformation of a liquid caused by a thrown object. Furthermore, considered together with our previous experiments, we confirmed that this phenomenon propagated from the surface of the composite material to the interior, where the optical fiber was embedded. The total amount of residual strain formed around each impact point was linearly proportional to the applied external impact energy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10223
Author(s):  
Young Hun Ju ◽  
Jong Wan Hu

In this study, the characteristics of the compression behavior of polyurethane springs that can be used as compression members of seismic devices, such as dampers and seismic isolators, were identified, and the effect of the design variables on the performance points of polyurethane springs was investigated. Compressive stiffness and specimen size were set as the design variables of the polyurethane spring, and the performance indicators were set as maximum force, residual strain, and energy dissipation. A total of 40 specimens with different conditions were fabricated and a cyclic loading test was performed to obtain the force-displacement curve of the polyurethane spring and to check the performance indicator. Significant strength degradation was confirmed after the first cycle by repeated loading, and it was confirmed that compressive stiffness and size demonstrated a linear proportional relationship with maximum force. In addition, the design variables did not make a significant change to the recovered strain, including residual strain, and residual strain of about 1% to 3% occurred. Energy dissipation showed a tendency to decrease by about 60% with strength degradation after the first cycle, and this also demonstrated no relationship with the design variables. Finally, the relationship between the design variables and performance indicators set in this study was reviewed and suggestions are presented for developing a simple design formula for polyurethane springs.


Author(s):  
Will Zhang ◽  
Gerhard Sommer ◽  
Justyna A. Niestrawska ◽  
Gerhard A. Holzapfel ◽  
David Nordsletten
Keyword(s):  

2021 ◽  
Author(s):  
MOHAMMADHOSSEIN GHAYOUR ◽  
MEHDI HOJJATI ◽  
RAJAMOHAN GANESAN

Automated manufacturing defects are types of composite structure defects that occur during fiber deposition by advanced robots. The induced gap is the most probable type of defect in the Automated Fiber Placement (AFP) technique. This defect can affect the mechanical performance of the composite structures at both material level by inducing the material inhomogeneity and the structural level by introducing the consolidation effect in the structure during the curing process. The current study investigates the effect of induced-gaps on the damage assessment of thin composite plates under Low-Velocity Impact (LVI) loading. The paper focuses on the delamination initiation and propagation and the residual plastic strain state of the impacted plates. The primary application of this study is to understand the interaction of induced gaps on the delamination pattern of composite samples subjected to LVI. For this purpose, a series of LVI tests are performed. Ultrasonic C-scan analysis and microscopic observation are implied to evaluate the internal damage due to impact loading. Finite Element (FE) analyses are then performed to evaluate the residual strain of the composite plates under Impact Energy (IE) loading less than 15 J. Then, the residual plastic strain in the impact zone is evaluated using a meso-macro method, and the effect of the local plasticity that occurs in the gap zones on the delamination initiation and propagation is studied. Results show that the stress relaxation due to the resin plasticity at the gap areas can affect the delamination pattern of the impacted composite plates. It is also shown that the residual strain of the impacted plates at the gap areas are new sources of the damages that need to be considered in the LVI analysis of the composite plates manufactured by the AFP technique.


2021 ◽  
Author(s):  
NITHIN K. PARAMBIL ◽  
BRANNDON R. CHEN ◽  
JOSEPH M. DEITZEL ◽  
JOHN W. GILLESPIE, JR. ◽  
LOAN T. VO ◽  
...  

A computational model of residual stress is developed for AS4/polypropylene composites and implemented via user material subroutine (UMAT) in ABAQUS. The main factors included in the model are the cooling-rate dependent crystallinity, temperature-dependent elastic modulus, and temperature-dependent coefficient of thermal expansion (CTE) of the matrix, and the temperature-independent transversely isotropic properties of the carbon fiber. Numerical results are generated for the case of a single fiber embedded in a thin film of polypropylene sample to replicate the process history and test configuration. During single fiber composite processing, a precalculated weight (tensile preload) is applied at the fiber ends to eliminate buckling/waviness of the carbon fiber induced by matrix shrinkage in the axial direction of the fiber. Experiments and Finite element (FE) analysis have been conducted with different preloads (1g, 4g, and 8g) at 25°C. Micro-Raman spectroscopy is utilized to validate the residual strain with different preloads at the bulk. The measured strain values show a good correlation with the predicted residual strain for various preload conditions.


Sign in / Sign up

Export Citation Format

Share Document