Responses of vestibular units to stimulation of individual semicircular canals

1969 ◽  
Vol 24 (2) ◽  
pp. 310-324 ◽  
Author(s):  
Carlo Desole ◽  
Eugenio A. Pallestrini
1994 ◽  
Vol 72 (6) ◽  
pp. 2691-2702 ◽  
Author(s):  
Y. Shinoda ◽  
Y. Sugiuchi ◽  
T. Futami ◽  
N. Ando ◽  
T. Kawasaki

1. The pattern of connections between the six semicircular canals and neck motoneurons of the multifidus muscle group was investigated by recording intracellular potentials from motoneurons in the upper cervical cord of anesthetized cats. 2. Synaptic potentials were recorded in motoneurons of the rectus capitis posterior (RCP) muscle at C1, the obliquus capitis inferior (OCI) muscle at C1 and C2, and the cervical multifidus muscle (Multi) at C4 in response to electrical stimulation of individual ampullary nerves of the six semicircular canals. Excitatory or inhibitory postsynaptic potentials (EPSPs or IPSPs, respectively) were evoked by separate stimulation of individual ampullary nerves in all of the neck motoneurons. Virtually all of the neck motoneurons received convergent inputs from the six ampullary nerves. 3. Motoneurons that supplied a single muscle had a homogeneous pattern of input from the six semicircular canals. There were two patterns of input from the six semicircular canals to motoneurons of the multifidus muscle group. RCP and Multi motoneurons were excited by stimulation of the bilateral anterior canal nerves (ACNs) and the contralateral lateral canal nerve (LCN) and inhibited by stimulation of the bilateral posterior canal nerves (PCNs) and the ipsilateral LCN. This input pattern is similar to that previously observed in other dorsal extensor muscles, whereas the other input pattern observed in OCI motoneurons is entirely new. OCI motoneurons at C1 and C2 were excited by stimulation of the ipsilateral ACN, PCN, and the contralateral LCN and inhibited by stimulation of the contralateral ACN, PCN, and the ipsilateral LCN. 4. Most postsynaptic potentials (PSPs) were disynaptic, but there were trisynaptic inhibitory connections between the contralateral ACN and PCN and OCI motoneurons, and between the contralateral PCN and RCP motoneurons. 5. The pathways for mediating these inputs from different semicircular canals to neck motoneurons were determined by making lesions in the lower medulla. Transection of the ipsilateral medial longitudinal fascicle (MLF) abolished the following potentials: all disynaptic PSPs in RCP motoneurons except the disynaptic EPSPs from the ipsilateral ACN, and in OCI motoneurons, disynaptic PSPs from the bilateral LCNs, and disynaptic IPSPs from the contralateral PCN. Complete bilateral section of the MLF did not affect the disynaptic EPSPs from the ipsilateral ACN in RCP motoneurons, the disynaptic EPSPs from the ipsilateral ACN and PCN in OCI motoneurons, nor the trisynaptic IPSPs from the contralateral ACN and PCN in COI motoneurons and from the contralateral PCN in RCP motoneurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Vol 10 ◽  
Author(s):  
Catalina Aranda-Moreno ◽  
Kathrine Jáuregui-Renaud ◽  
Jaime Reyes-Espinosa ◽  
Angelina Andrade-Galicia ◽  
Ana E. Bastida-Segura ◽  
...  

2002 ◽  
Vol 88 (3) ◽  
pp. 1234-1244 ◽  
Author(s):  
Meir Plotnik ◽  
Vladimir Marlinski ◽  
Jay M. Goldberg

To study presumed efferent-mediated responses, we determined if afferents responded to head rotations that stimulated semicircular canals other than the organ being innervated. To minimize stimulation of an afferent's own canal, its plane was placed nearly orthogonal to the rotation plane. Otolith units were tested in a horizontal head position with the ear placed near the rotation axis to minimize linear forces. Under these circumstances, angular-velocity trapezoids (2-s ramps, 2-s plateau) evoked excitatory responses for both rotation directions. These type III responses were considerably larger in decerebrate than in anesthetized preparations. In addition to their being exclusively excitatory, the responses resembled those obtained with electrical stimulation of efferent pathways in including per-stimulus and more prolonged post-stimulus components and in being larger in irregularly discharging than in regularly discharging units. Responses, which were not seen for rotations <80°/s, grew as velocity increased between 80 and 500°/s but were seldom larger than 20 spikes/s. Complete section of the VIIIth nerve abolished type III responses, leaving conventional afferent responses intact. To study the separate contributions of canals on the two sides, responses were compared when the labyrinths were intact and when the ipsilateral or contralateral horizontal canal was mechanically inactivated. Both sides contributed to the efferent-mediated responses. That afferents could be influenced from the contralateral labyrinth was confirmed with the use of unilateral galvanic currents. Following inactivation, excitatory responses were produced by rotations exciting or inhibiting the intact horizontal canal with the responses resulting from excitatory rotations being much larger. Such a response asymmetry is consistent with a semicircular-canal origin for the type III responses. A similar asymmetry was seen in the post-stimulus responses to contralateral cathodal (excitatory) and anodal (inhibitory) galvanic currents. We conclude that the efferent system receives a sufficiently powerful vestibular input from both the ipsilateral and contralateral labyrinths to affect afferent discharge.


2021 ◽  
Vol 12 ◽  
Author(s):  
Darrian Rice ◽  
Giorgio P. Martinelli ◽  
Weitao Jiang ◽  
Gay R. Holstein ◽  
Suhrud M. Rajguru

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.


Sign in / Sign up

Export Citation Format

Share Document