scholarly journals Pulsed Infrared Stimulation of Vertical Semicircular Canals Evokes Cardiovascular Changes in the Rat

2021 ◽  
Vol 12 ◽  
Author(s):  
Darrian Rice ◽  
Giorgio P. Martinelli ◽  
Weitao Jiang ◽  
Gay R. Holstein ◽  
Suhrud M. Rajguru

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.

1999 ◽  
Vol 9 (5) ◽  
pp. 347-357
Author(s):  
A. Tribukait

Measurements of the subjective visual horizontal (SVH) were performed in 11 healthy test persons during an increase of the resultant gravitoinertial force vector in a large swing-out gondola centrifuge. Three levels of hypergravity (1.5g, 2.0g, 2.5g) were used, each with a duration of 4 minutes and with 1–2 minute pauses at 1.0g in between. The direction of the resultant gravitoinertial force vector was always parallel with the head and body length axis. Hence, there was no roll stimulus to the otolith organs. The swing-out of the gondola during acceleration, however, is sensed by the vertical semicircular canals as a change in roll head position, thus creating an otolith-semicircular canal conflict. After acceleration of the centrifuge there was a tilt of the SVH relative to the resultant gravitoinertial horizontal. This tilt gradually decayed during the 4-minute period of recordings. For a subgroup of seven test subjects who had completely normal ENG-recordings in 1g environment, the initial offset of SVH and the time constants for exponential decay were determined for each g level; initial offsets: 9 . 9 ∘ (1.5g), 7 . 7 ∘ (2.0g), 6 . 1 ∘ (2.5g); time constants: 89s (1.5g), 74s (2.0g), 37s (2.5g). The offset of SVH is interpreted as being the result of mainly the stimulus to the vertical semicircular canals during acceleration of the centrifuge. The slow decay, however, does not correspond to the dynamics of the semicircular canal system, and is suggested to reflect some kind of central position storage mechanism. A smaller offset and more rapid decay for the higher g loads may be explained by an increasing dominance of graviceptive input, presumably from the saccules. In conclusion, these results might suggest the role of the vertical semicircular canals as well as the sacculus in the formation of SVH. They may also have relevance with regard to the spatial disorientation problem in aviators.


1964 ◽  
Vol 42 (6) ◽  
pp. 793-801 ◽  
Author(s):  
K. E. Money ◽  
J. Friedberg

The discrete surgical inactivation of all six semicircular canals was found to be equivalent to bilateral labyrinthectomy in eliminating motion sickness in dogs, even though the otolith organs remained functional. Inactivation of fewer than six of the canals reduced the susceptibility of dogs to motion sickness, but to a lesser degree than did inactivation of all six canals. These findings are consistent with the theory that stimulation of the semicircular canals causes motion sickness.Rotatory tests of the horizontal and vertical semicircular canals and tests of an otolith reflex, preoperatively and postoperatively, yielded information about the basic functions of the semicircular canals and confirmed that the surgical procedures had accomplished their objectives without unintended damage to other vestibular receptors.


2021 ◽  
pp. 1-16
Author(s):  
Alexander Yang Hui Xiang ◽  
Prashanna Khwaounjoo ◽  
Yusuf Ozgur Cakmak

BACKGROUND: Neural circuits allow whole-body yaw rotation to modulate vagal parasympathetic activity, which alters beat-to-beat variation in heart rate. The overall output of spinning direction, as well as vestibular-visual interactions on vagal activity still needs to be investigated. OBJECTIVE: This study investigated direction-dependent effects of visual and natural vestibular stimulation on two autonomic responses: heart rate variability (HRV) and pupil diameter. METHODS: Healthy human male subjects (n = 27) underwent constant whole-body yaw rotation with eyes open and closed in the clockwise (CW) and anticlockwise (ACW) directions, at 90°/s for two minutes. Subjects also viewed the same spinning environments on video in a VR headset. RESULTS: CW spinning significantly decreased parasympathetic vagal activity in all conditions (CW open p = 0.0048, CW closed p = 0.0151, CW VR p = 0.0019,), but not ACW spinning (ACW open p = 0.2068, ACW closed p = 0.7755, ACW VR p = 0.1775,) as indicated by an HRV metric, the root mean square of successive RR interval differences (RMSSD). There were no direction-dependent effects of constant spinning on sympathetic activity inferred through the HRV metrics, stress index (SI), sympathetic nervous system index (SNS index) and pupil diameter. Neuroplasticity in the CW eyes closed and CW VR conditions post stimulation was observed. CONCLUSIONS: Only one direction of yaw spinning, and visual flow caused vagal nerve neuromodulation and neuroplasticity, resulting in an inhibition of parasympathetic activity on the heart, to the same extent in either vestibular or visual stimulation. These results indicate that visual flow in VR can be used as a non-electrical method for vagus nerve inhibition without the need for body motion in the treatment of disorders with vagal overactivity. The findings are also important for VR and spinning chair based autonomic nervous system modulation protocols, and the effects of motion integrated VR.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1028
Author(s):  
Catherine Spicer ◽  
Prashanna Khwaounjoo ◽  
Yusuf Ozgur Cakmak

Pupillary alterations in virtual humans induce neurophysiological responses within an observer. Technological advances have enabled rapid developments in artificial intelligence (AI), from verbal systems, to visual AI interfaces with the ability to express, and respond to emotional states of a user. Visual AI interfaces are able to change their physical parameters, such as pupil diameter. Pupillary changes can alter heart rate, however, effects on heart rate variability (HRV) are unknown. HRV, is an autonomic, non-conscious parameter which monitors sympathetic and parasympathetic nervous system (PNS) activity. N = 34 male participants aged between 19–33 were subjected to a number of conditions such as pupil dilation, constriction and blushing. The present research is the first to investigate the effects of virtual human interactions on human HRV. Outcomes of this study were obtained using eye tracking and HRV measurements. Pupil dilation relative to constriction presented in the female virtual partner induced a significant right pupillary diameter increase (p = 0.041) in human observers. Additionally, female virtual partner pupil constriction relative to dilation induced a significant increase in participants’ PNS HRV response (p = 0.036). These findings indicate the ability of a female virtual interaction partner to modulate parasympathetic autonomic functioning in young healthy male humans. This allows first insights into the effects of interacting with virtual AI interaction partners, on human autonomic functioning, and may aid development of future virtual humans, and their implementation into relevant clinical settings.


Development ◽  
1973 ◽  
Vol 29 (3) ◽  
pp. 721-743
Author(s):  
Howard C. Howland ◽  
Joseph Masci

1. The ontogenetic allometry of radii of curvature and the tube radii of the semicircular canals of approximately 85 juvenile (2–20 g) centrarchids of the species Lepomis gibbosus (L.) was investigated. The radii of curvature of the semicircular canals have different allometries; these arefor the anterior vertical, posterior vertical and horizontal canals respectively. The differences in growth exponents between the anterior and posterior vertical semicircular canals and between the anterior vertical and horizontal semicircular canals were statistically significant (P < 0·02 and P < 0·05 respectively). 2. Body mass and standard length were almost equally good predictors of the radii of curvature of the anterior vertical semicircular canals, but body mass was the better predictor of the radii of curvature of the posterior vertical and horizontal semicircular canals, as judged by the magnitude of the mean squares about the logarithmic regressions of radii on length and mass. 3. By measuring and estimating the area moments of the fins of the fish, the moments of inertia about various axes and the allometry of the characteristic swimming velocity of the fish, we attempted to account for the magnitude and direction of the differences in allometric growth exponents of the radii of curvature of the semicircular canals. Unexplained by our best estimate of growth exponents was the very high value observed for the posterior vertical semicircular canals. 4. No significant correlation could be found between the residuals of the major dimensions of the posterior vertical semicircular canals and those of body width or depth once the influence of body mass was removed. This finding suggests the rejection of the hypothesis that the allometry of this semicircular canal is simply correlated with overall body expansion in its plane. 5. The discrepancies between our predictions and observations of growth exponents could be explained by a gradual increase of the spring constant of the semicircular canals on the order ofthough they may also be due to other factors neglected in our model, e.g. the allometry of the added mass of the fish. 6. No evidence suggested that the shape of the semicircular canals was altered over the size range of the fish we studied. However, among the fins of the fish and the major body dimensions, only the width and the depth of the fish exhibited growth constants that did not differ significantly from each other. 7. We computed the effective toroidal radii of the non-toroidal-shaped vertical semicircular canals and found that the equivalent toroidal radius of the anterior vertical semicircular canal was consistently greater than that of the posterior vertical semicircular canal. This difference is explicable on the basis of the different moments of inertia of the animal about axes through the center of gravity and parallel to the axes of the semicircular canals. 8. We computed the allometry of the ratios R̄/r2 for all three semicircular canals and found in accordance with the prediction of Jones & Spells that they did not differ significantly from zero. 9. The allometry of the outer tube radii of the several semicircular canals was determined, and, while there was no significant difference in the growth exponents of the tube radii, it was noted that the tube radius of the horizontal semicircular canal was consistently and significantly smaller than that of the vertical semicircular canal. We suggested that this difference might be due to the broader range of frequencies that the fish experienced about its yaw axis. 10. Taken as a whole the data and calculations of this paper generally support the theory that the dimensions of the semicircular canals and the ontogenetic changes in them attune the semicircular canals to the angular frequency spectra that the fish experience about their axes.


1986 ◽  
Vol 56 (4) ◽  
pp. 1147-1156 ◽  
Author(s):  
R. H. Schor ◽  
I. Suzuki ◽  
S. J. Timerick ◽  
V. J. Wilson

The responses of interneurons in the cervical spinal cord of the decerebrate cat to whole-body tilt were studied with a goal of identifying spinal elements in the production of forelimb vestibular postural reflexes. Interneurons both in the cervical enlargement and at higher levels, from which propriospinal neurons have been identified, were examined, both in animals with intact labyrinths and in animals with nonfunctional semicircular canals (canal plugged). Most cervical interneurons responding to tilt respond best to rotations in vertical planes aligned within 30 degrees of the roll plane. Two to three times as many neurons are excited by side-up roll tilt as are excited by side-down roll. In cats with intact labyrinths, most responses have dynamics proportional either to (and in phase with) the position of the animal or to a sum of position and tilt velocity. This is consistent with input from both otolith organs and semicircular canals. In animals without functioning canals, the "velocity" response is absent. In a few cells (8 out of 76), a more complex response, characterized by an increasing gain and progressive phase lag, was observed. These response dynamics characterize the forelimb reflex in canal-plugged cats and have been previously observed in vestibular neurons in such preparations.


2015 ◽  
Vol 28 (3) ◽  
pp. 627-636 ◽  
Author(s):  
Gustavo Henrique de Oliveira Mondoni ◽  
Luiz Carlos Marques Vanderlei ◽  
Bruno Saraiva ◽  
Franciele Marques Vanderlei

AbstractIntroduction It is known that physical exercise is beneficial and precipitates adjustments to the autonomic nervous system. However, the effect of exercise on cardiac autonomic modulation in children, despite its importance, is poorly investigated.Objective To bring together current information about the effects of exercise on heart rate variability in healthy and obese children.Methods The literature update was performed through a search for articles in the following databases; PubMed, PEDro, SciELO and Lilacs, using the descriptors “exercise” and “child” in conjunction with the descriptors “autonomic nervous system”, “sympathetic nervous system”, “parasympathetic nervous system” and also with no descriptor, but the key word of this study, “heart rate variability”, from January 2005 to December 2012.Results After removal of items that did not fit the subject of the study, a total of 9 articles were selected, 5 with healthy and 4 with obese children.Conclusion The findings suggest that exercise can act in the normalization of existing alterations in the autonomic nervous system of obese children, as well as serve as a preventative factor in healthy children, enabling healthy development of the autonomic nervous system until the child reaches adulthood.


1999 ◽  
Vol 10 (12) ◽  
pp. 2577-2584
Author(s):  
MICHEL G. W. BARNAS ◽  
WALTHER H. BOER ◽  
HEIN A. KOOMANS

Abstract. Intradialytic hypotension, a major source of morbidity during hemodialysis and ultrafiltration, is often accompanied by paradoxical bradycardia. Relatively little is known about the sequential changes in autonomic nervous system activity up to and during the hypotensive episode. Continuous, beat-to-beat measurements of BP and heart rate were made during hemodialysis in patients prone (n = 8) and not prone (n = 11) to develop intradialytic hypotension. Off-line spectral analysis of heart rate variability (HRV) was performed to assess changes in autonomic nervous system activity during dialysis sessions both with and without hypotension. The low frequency (LF) component of HRV is thought to correlate with sympathetic nervous system activity, the high frequency (HF) component with that of the parasympathetic nervous system. In the sessions not complicated by symptomatic hypotension (n = 26), mean arterial BP (MAP) hardly fell, whereas heart rate increased from 77 ± 2 to 89 ± 5 bpm (P < 0.05). The LF component of HRV increased from 45.2 ± 5.0 normalized units (nu) to 59.9 ± 4.9 nu (P < 0.05), whereas the HF component fell from 54.8 ± 5.0 to 40.2 ± 4.4 nu (P < 0.05). These changes agree with compensatory baroreflex-mediated activation of the sympathetic nervous system (and suppressed parasympathetic activity) during ultrafiltration-induced intravascular volume depletion. In the sessions complicated by severe symptomatic hypotension (n = 22), the changes in heart rate and the results of spectral analysis of HRV were similar to those reported above up to the moment of sudden symptomatic (nausea, vomiting, dizziness, cramps) hypotension, whereas MAP had already fallen gradually from 94 ± 3 to 85 ± 3 mmHg (P < 0.05). The sudden further reduction in MAP (to 55 ± 2 mmHg, P < 0.02) was invariably accompanied by bradycardia (heart rate directly before hypotension 90 ± 2 bpm, during hypotension 69 ± 3 bpm, P < 0.002). The LF component of HRV fell from 62.8 ± 4.6 nu directly before to 40.0 ± 3.7 nu (P < 0.05) during hypotension, whereas the HF component increased from 37.9 ± 4.7 to 60.3 ± 3.7 nu (P < 0.05). These findings agree with activation of the cardiodepressor reflex, involving decreased sympathetic and increased parasympathetic nervous system activity, respectively. These findings indicate that activation of the sympatho-inhibitory cardiodepressor reflex (Bezold-Jarisch reflex), which is a physiologic response to a critical reduction in intravascular volume and cardiac filling, is the cause of sudden intradialytic hypotension.


Circulation ◽  
2021 ◽  
Vol 143 (Suppl_1) ◽  
Author(s):  
Desuo Wang

Tai Chi movements are unique exercise that can improve cognition, strength somatomotor coordination, and enhance autonomic nerve regulation on internal organ function. The mild increase in heart rate and/or slight sweat during and after practicing Tai Chi indicates the activation of the sympathetic nervous system. There is lack of evidence to show that Tai Chi exercise enhances the activity of parasympathetic nervous system though it has been claimed that practicing Tai Chi could do so. The author tested the hypothesis that Tai Chi exercise brings on an increase in parasympathetic nerve outputs (PNO). The PNO is evaluated by recording the bowel sounds using an audio recorder (Sony digital voice recorder ICD-PX Series) and the data analyses were done using NCH software (WavePad audio editor). The heart rate was simultaneously recorded using a fingertip pulse oximeter (Zacurate Pro Series 500DL) during Tai Chi exercise. All the data was repeatedly collected from a Tai Chi Master in a study period of 6 months. A total of 30 recordings were used to carry out the analysis. The audible bowel sounds occurred when the performer started to do the Ready-Movement of Yang-style Tai Chi. These Tai Chi induced-bowel sounds lasted from the beginning to the end of a set of movements (3-5 min for 24-moves style). The frequency of bowel sounds was in a range of 0.2 to 3.5 Hz. The average number of bowel sounds was approximately 2.5 sounds per Tai Chi Move. The intensity and frequency of the bowel sounds are not related to the change of the performer’s heart rate. In comparison, meditation or deep squat exercise performed by the Tai Chi master did not cause any changes in the bowel sounds. According to the autonomic innervation of the GI tract, increase of bowel movements is mediated by PNO. In conclusion, Tai Chi movements can simultaneously exercise skeletal muscles, sympathetic nervous system and parasympathetic nervous system. The enhancement of parasympathetic nervous system output by Tai Chi exercise is a valuable modality of physical exercise for wellness.


Sign in / Sign up

Export Citation Format

Share Document