scholarly journals Evidence for a distinct H7-resistant form of protein kinase C in rat anterior pituitary gland

FEBS Letters ◽  
1993 ◽  
Vol 329 (1-2) ◽  
pp. 199-204 ◽  
Author(s):  
Angela J. Ison ◽  
David J. MacEwan ◽  
Melanie S. Johnson ◽  
Roger A. Clegg ◽  
Kevin Connor ◽  
...  
Endocrinology ◽  
2002 ◽  
Vol 143 (8) ◽  
pp. 3060-3070 ◽  
Author(s):  
Christopher John ◽  
Patricia Cover ◽  
Egle Solito ◽  
John Morris ◽  
Helen Christian ◽  
...  

2000 ◽  
Vol 78 (3) ◽  
pp. 329-343 ◽  
Author(s):  
Anderson OL Wong ◽  
Wen Sheng Li ◽  
Eric KY Lee ◽  
Mei Yee Leung ◽  
Lai Yin Tse ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) is a novel member of the secretin-glucagon peptide family. In mammals, this peptide has been located in a wide range of tissues and is involved in a variety of biological functions. In lower vertebrates, especially fish, increasing evidence suggests that PACAP may function as a hypophysiotropic factor regulating pituitary hormone secretion. PACAP has been identified in the brain-pituitary axis of representative fish species. The molecular structure of fish PACAP is highly homologous to mammalian PACAP. The prepro-PACAP in fish, however, is distinct from that of mammals as it also contains the sequence of fish GHRH. In teleosts, the anterior pituitary is under direct innervation of the hypothalamus and PACAP nerve fibers have been identified in the pars distalis. Using the goldfish as a fish model, mRNA transcripts of PACAP receptors, namely the PAC1 and VPAC1 receptors, have been identified in the pituitary as well as in various brain areas. Consistent with the pituitary expression of PACAP receptors, PACAP analogs are effective in stimulating growth hormone (GH) and gonadotropin (GTH)-II secretion in the goldfish both in vivo and in vitro. The GH-releasing action of PACAP is mediated via pituitary PAC1 receptors coupled to the adenylate cyclase-cAMP-protein kinase A and phospholipase C-IP3-protein kinase C pathways. Subsequent stimulation of Ca2+ entry through voltage-sensitive Ca2+ channels followed by activation of Ca2+-calmodulin protein kinase II is likely the downstream mechanism mediating PACAP-stimulated GH release in goldfish. Although the PACAP receptor subtype(s) and the associated post-receptor signaling events responsible for PACAP-stimulated GTH-II release have not been characterized in goldfish, these findings support the hypothesis that PACAP is produced in the hypothalamus and delivered to the anterior pituitary to regulate GH and GTH-II release in fish.Key words: PACAP, VIP, PAC1 receptor, VPAC1 receptor, VPAC2 receptor, growth hormone, gonadotropin-II, cAMP, protein kinase A, protein kinase C, calcium, pituitary cells, goldfish, and teleost.


2005 ◽  
Vol 184 (1) ◽  
pp. 29-40 ◽  
Author(s):  
A Hassan ◽  
D Mason

Arginine vasopressin (AVP) stimulates adrenocorticotropin (ACTH) secretion from corticotroph cells of the anterior pituitary via activation of the V1b vasopressin receptor, a member of the G protein-coupled receptor (GPCR) family. Recently, we have shown that treatment of ovine anterior pituitary cells with AVP for short periods results in reduced responsiveness to subsequent stimulation with AVP. The aim of this study was to investigate mechanisms involved in this desensitization process. Among the GPCR family, rapid desensitization is commonly mediated by receptor phosphorylation, with resensitization being mediated by internalization and subsequent dephosphorylation of the receptors by protein phosphatases. Since desensitization of V1a vasopressin receptors is mediated by protein kinase C-mediated receptor phosphorylation, we investigated the involvement of this enzyme in desensitization of the ACTH response to AVP. Treatment of perifused ovine anterior pituitary cells with the specific protein kinase C (PKC) activator 1,2-dioctanoyl-sn-glycerol (300 μM) did not induce any reduction in response to a subsequent 5-min stimulation with 100 nM AVP, despite potently stimulating ACTH secretion. Likewise, the results obtained using the PKC inhibitor Ro 31-8220 were not consistent with involvement of PKC in AVP desensitization: 2 μM Ro 31-8220 did not reduce the ability of a 10 nM AVP pretreatment to induce desensitization to a subsequent stimulation with 100 nM AVP. Pharmacologic blockade of receptor internalization by treatment with 0.25 mg/ml concanavalin A significantly impaired the ability of a 15-min pretreatment with 10 nM AVP to induce desensitization, rather than affecting resensitization. Treatment with 10 nM okadaic acid, an inhibitor of protein phosphatase 1 and 2A, had no effect on either resensitization or desensitization. In contrast, inhibition of protein phosphatase 2B (PP2B) with 1 μM FK506 decreased the rate of resensitization: complete recovery from desensitization took 40 min, whereas in controls recovery was complete 20 min after termination of the pretreatment. These results indicate that desensitization of the ACTH response to AVP is not mediated by PKC-catalyzed phosphorylation, suggesting subtype-specific differences in the regulation of V1a and V1b vasopressin receptors. The data demonstrate that desensitization was dependent, at least in part, upon receptor internalization and that resensitization was dependent upon PP2B-mediated receptor dephosphorylation.


Sign in / Sign up

Export Citation Format

Share Document