differential involvement
Recently Published Documents


TOTAL DOCUMENTS

485
(FIVE YEARS 41)

H-INDEX

61
(FIVE YEARS 3)

2021 ◽  
Vol 12 ◽  
Author(s):  
Rakesh K. Upadhyay ◽  
Tahira Fatima ◽  
Avtar K. Handa ◽  
Autar K. Mattoo

Polyamines have been implicated in ameliorating the detrimental effects of drought and saline conditions on plant growth and development. The independent impact of these two abiotic stresses on polyamine (PA) biosynthesis, catabolism, and homeostasis, as well as on their transcript abundance in tomato leaves, is presented here. We show that the total levels of putrescine (PUT), spermidine (SPD), and spermine (SPM) increase up to 72 h during drought and up to 48 h during salinity stress before their precipitable drop thereafter. Thus, tomato plants maintain survivability to drought as well as salinity stress for up to 3 and 2 days, respectively. Independent multivariant analyses of drought and salinity stress kinetic data separately showed a closer association with levels of free, conjugated, and bound forms of SPD and SPM, but not with free or bound PUT. However, combined multivariant analyses showed a closer association of free SPD, conjugated SPD, and bound SPD with both stresses; SPD-bound and SPM conjugated with drought; and free SPM and conjugated PUT with salinity stress, respectively. PA biosynthesis genes, ARG1, SPDS1, and SAMDc3, segregated with drought and SPDS2 with salinity stress. PA catabolic genes CuAO4-like and PAO4 were associated with drought and salinity stresses, respectively, suggesting differential involvement of PA biosynthesis and catabolic genes in drought and salinity stresses. Pearson correlation indicated mostly positive correlations between the levels of free, conjugated, and bound forms of PUT, SPD, and SPM under drought and salinity stress. However, negative correlations were mostly seen between the levels of various forms of the PAs and their biosynthesis/catabolic genes. Levels of different PA forms had a twofold higher negative correlation during drought as compared to salinity stress (66 vs. 32) and with transcript levels of PA biosynthesis and catabolic genes. Transcripts of light-harvesting chlorophyll a/b-binding genes were generally positively associated with different forms of PAs but negatively to carbon flow genes. Most of the PA biosynthesis genes were coordinately regulated under both stresses. Collectively, these results indicate that PAs are distinctly regulated under drought and salinity stress with different but specific homologs of PA biosynthesis and catabolic genes contributing to the accumulation of free, conjugated, and bound forms of PAs.


2021 ◽  
pp. 089198872110447
Author(s):  
Corey J. Bolton ◽  
Joyce W. Tam

Sporadic early-onset Alzheimer’s disease (sEOAD) is often associated with atypical clinical features, yet the cause of this heterogeneity remains unclear. This study investigated post-mortem atrophy of the locus coeruleus (LC) in sEOAD and late-onset Alzheimer’s disease (LOAD). Levels of LC atrophy, as estimated by pathologist-rating of hypopigmentation, were compared between sEOAD (n = 115) and LOAD (n = 672) participants while controlling for other measures of pathological progression. Subsequent analyses compared low vs. high LC atrophy sEOAD subgroups on neuropsychological test performance. Results show nearly 4 times greater likelihood of higher LC atrophy in sEOAD as compared to LOAD ( p < .005). sEOAD participants with greater LC atrophy displayed significantly worse performance on various baseline measures of attentional functioning ( p < .05), despite similar global cognition ( p = .25). These findings suggest the LC is an important potential driver of clinical and pathological heterogeneity in sEOAD.


2021 ◽  
pp. 107991
Author(s):  
Wenjuan Li ◽  
Ping Yang ◽  
Ronald K. Ngetich ◽  
Junjun Zhang ◽  
Zhenlan Jin ◽  
...  

Author(s):  
Ryota Tanaka ◽  
Yuki Ichimura ◽  
Noriko Kubota ◽  
Akimasa Saito ◽  
Yoshiyuki Nakamura ◽  
...  

Author(s):  
Pierre Wibawa ◽  
Florian Kurth ◽  
Eileen Luders ◽  
Christos Pantelis ◽  
Vanessa L. Cropley ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2780
Author(s):  
Stefano Sorrentino ◽  
Roberto Ascari ◽  
Emanuela Maderna ◽  
Marcella Catania ◽  
Bernardino Ghetti ◽  
...  

Alzheimer’s disease (AD) is increasingly recognized as a highly heterogeneous disorder occurring under distinct clinical and neuropathological phenotypes. Despite the molecular determinants of such variability not being well defined yet, microglial cells may play a key role in this process by releasing distinct pro- and/or anti-inflammatory cytokines, potentially affecting the expression of the disease. We carried out a neuropathological and biochemical analysis on a series of AD brain samples, gathering evidence about the heterogeneous involvement of microglia in AD. The neuropathological studies showed differences concerning morphology, density and distribution of microglial cells among AD brains. Biochemical investigations showed increased brain levels of IL-4, IL-6, IL-13, CCL17, MMP-7 and CXCL13 in AD in comparison with control subjects. The molecular profiling achieved by measuring the brain levels of 25 inflammatory factors known to be involved in neuroinflammation allowed a stratification of the AD patients in three distinct “neuroinflammatory clusters”. These findings strengthen the relevance of neuroinflammation in AD pathogenesis suggesting, in particular, that the differential involvement of neuroinflammatory molecules released by microglial cells during the development of the disease may contribute to modulate the characteristics and the severity of the neuropathological changes, driving—at least in part—the AD phenotypic diversity.


Sign in / Sign up

Export Citation Format

Share Document