A simple and accurate added mass model for hydrodynamic fluid—Structure interaction analysis

1996 ◽  
Vol 333 (6) ◽  
pp. 929-945 ◽  
Author(s):  
Ray P.S. Han ◽  
Hanzhong xu
2020 ◽  
Vol 25 (1) ◽  
pp. 9
Author(s):  
Nikolay Banichuk ◽  
Svetlana Ivanova ◽  
Evgeny Makeev ◽  
Juha Jeronen ◽  
Tero Tuovinen

The paper considers the analysis of a traveling panel, submerged in axially flowing fluid. In order to accurately model the dynamics and stability of a lightweight moving material, the interaction between the material and the surrounding air must be taken into account. The lightweight material leads to the inertial contribution of the surrounding air to the acceleration of the panel becoming significant. This formulation is novel and the case complements our previous studies on the field. The approach described in this paper allows for an efficient semi-analytical solution, where the reaction pressure of the fluid flow is analytically represented by an added-mass model in terms of the panel displacement. Then, the panel displacement, accounting also for the fluid–structure interaction, is analyzed with the help of the weak form of the governing partial differential equation, using a Galerkin method. In the first part of this paper, we represent the traveling panel by a single partial differential equation in weak form, using an added-mass approximation of the exact fluid reaction. In the second part, we apply a Galerkin method for dynamic stability analysis of the panel, and present an analytical investigation of static stability loss (divergence, buckling) based on the added-mass model.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
S. Zhou-Bowers ◽  
D. C. Rizos

Reduced 3D dynamic fluid-structure interaction (FSI) models are proposed in this paper based on a direct time-domain B-spline boundary element method (BEM). These models are used to simulate the motion of rigid bodies in infinite or semi-infinite fluid media in real, or near real, time. B-spline impulse response function (BIRF) techniques are used within the BEM framework to compute the response of the hydrodynamic system to transient forces. Higher-order spatial and temporal discretization is used in developing the kinematic FSI model of rigid bodies and computing its BIRFs. Hydrodynamic effects on the massless rigid body generated by an arbitrary transient acceleration of the body are computed by a mere superposition of BIRFs. Finally, the dynamic models of rigid bodies including inertia effects are generated by introducing the kinematic interaction model to the governing equation of motion and solve for the response in a time-marching scheme. Verification examples are presented and demonstrate the stability, accuracy, and efficiency of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document