scholarly journals Reduction modulo p of differential equations

1996 ◽  
Vol 7 (3) ◽  
pp. 367-387 ◽  
Author(s):  
Marius van der Put
Author(s):  
Julien Roques

Abstract This paper is a 1st step in the direction of a better understanding of the structure of the so-called Mahler systems: we classify these systems over the field $\mathscr{H}$ of Hahn series over $\overline{{\mathbb{Q}}}$ and with value group ${\mathbb{Q}}$. As an application of (a variant of) our main result, we give an alternative proof of the following fact: if, for almost all primes $p$, the reduction modulo $p$ of a given Mahler equation with coefficients in ${\mathbb{Q}}(z)$ has a full set of algebraic solutions over $\mathbb{F}_{p}(z)$, then the given equation has a full set of solutions in $\overline{{\mathbb{Q}}}(z)$ (this is analogous to Grothendieck’s conjecture for differential equations).


2018 ◽  
Vol 48 (3) ◽  
pp. 655-683 ◽  
Author(s):  
Vadim Schechtman ◽  
Alexander Varchenko

2018 ◽  
Vol 2020 (20) ◽  
pp. 7306-7346
Author(s):  
Kazuhiro Ito

Abstract We study the good reduction modulo $p$ of $K3$ surfaces with complex multiplication. If a $K3$ surface with complex multiplication has good reduction, we calculate the Picard number and the height of the formal Brauer group of the reduction. Moreover, if the reduction is supersingular, we calculate its Artin invariant under some assumptions. Our results generalize some results of Shimada for $K3$ surfaces with Picard number $20$. Our methods rely on the main theorem of complex multiplication for $K3$ surfaces by Rizov, an explicit description of the Breuil–Kisin modules associated with Lubin–Tate characters due to Andreatta, Goren, Howard, and Madapusi Pera, and the integral comparison theorem recently established by Bhatt, Morrow, and Scholze.


1999 ◽  
Vol 141 (1) ◽  
pp. 37-58
Author(s):  
Keiko Kinugawa ◽  
Masayoshi Miyanishi

2018 ◽  
Vol 14 (05) ◽  
pp. 1427-1457
Author(s):  
Yunqing Tang

The Grothendieck–Katz [Formula: see text]-curvature conjecture predicts that an arithmetic differential equation whose reduction modulo [Formula: see text] has vanishing [Formula: see text]-curvatures for almost all [Formula: see text] has finite monodromy. It is known that it suffices to prove the conjecture for differential equations on [Formula: see text] We prove a variant of this conjecture for [Formula: see text] which asserts that if the equation satisfies a certain convergence condition for all [Formula: see text] then its monodromy is trivial. For those [Formula: see text] for which the [Formula: see text]-curvature makes sense, its vanishing implies our condition. We deduce from this a description of the differential Galois group of the equation in terms of [Formula: see text]-curvatures and certain local monodromy groups. We also prove similar variants of the [Formula: see text]-curvature conjecture for an elliptic curve with [Formula: see text]-invariant [Formula: see text] minus its identity and for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document