scholarly journals Algebraic solutions of differential equations over ℙ1 −{0,1,∞}

2018 ◽  
Vol 14 (05) ◽  
pp. 1427-1457
Author(s):  
Yunqing Tang

The Grothendieck–Katz [Formula: see text]-curvature conjecture predicts that an arithmetic differential equation whose reduction modulo [Formula: see text] has vanishing [Formula: see text]-curvatures for almost all [Formula: see text] has finite monodromy. It is known that it suffices to prove the conjecture for differential equations on [Formula: see text] We prove a variant of this conjecture for [Formula: see text] which asserts that if the equation satisfies a certain convergence condition for all [Formula: see text] then its monodromy is trivial. For those [Formula: see text] for which the [Formula: see text]-curvature makes sense, its vanishing implies our condition. We deduce from this a description of the differential Galois group of the equation in terms of [Formula: see text]-curvatures and certain local monodromy groups. We also prove similar variants of the [Formula: see text]-curvature conjecture for an elliptic curve with [Formula: see text]-invariant [Formula: see text] minus its identity and for [Formula: see text].

Author(s):  
Julien Roques

Abstract This paper is a 1st step in the direction of a better understanding of the structure of the so-called Mahler systems: we classify these systems over the field $\mathscr{H}$ of Hahn series over $\overline{{\mathbb{Q}}}$ and with value group ${\mathbb{Q}}$. As an application of (a variant of) our main result, we give an alternative proof of the following fact: if, for almost all primes $p$, the reduction modulo $p$ of a given Mahler equation with coefficients in ${\mathbb{Q}}(z)$ has a full set of algebraic solutions over $\mathbb{F}_{p}(z)$, then the given equation has a full set of solutions in $\overline{{\mathbb{Q}}}(z)$ (this is analogous to Grothendieck’s conjecture for differential equations).


2018 ◽  
Vol 20 (04) ◽  
pp. 1750038
Author(s):  
Andrei Minchenko ◽  
Alexey Ovchinnikov

Motivated by developing algorithms that decide hypertranscendence of solutions of extensions of the Bessel differential equation, algorithms computing the unipotent radical of a parameterized differential Galois group have been recently developed. Extensions of Bessel’s equation, such as the Lommel equation, can be viewed as homogeneous parameterized linear differential equations of the third order. In this paper, we give the first known algorithm that calculates the differential Galois group of a third-order parameterized linear differential equation.


2019 ◽  
Vol 32 (4) ◽  
pp. 1749-1777 ◽  
Author(s):  
Nguyen Dinh Cong ◽  
Luu Hoang Duc ◽  
Phan Thanh Hong

Abstract We show that a linear Young differential equation generates a topological two-parameter flow, thus the notions of Lyapunov exponents and Lyapunov spectrum are well-defined. The spectrum can be computed using the discretized flow and is independent of the driving path for triangular systems which are regular in the sense of Lyapunov. In the stochastic setting, the system generates a stochastic two-parameter flow which satisfies the integrability condition, hence the Lyapunov exponents are random variables of finite moments. Finally, we prove a Millionshchikov theorem stating that almost all, in a sense of an invariant measure, linear nonautonomous Young differential equations are Lyapunov regular.


Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


1992 ◽  
Vol 15 (3) ◽  
pp. 509-515 ◽  
Author(s):  
B. S. Lalli ◽  
B. G. Zhang

An existence criterion for nonoscillatory solution for an odd order neutral differential equation is provided. Some sufficient conditions are also given for the oscillation of solutions of somenth order equations with nonlinearity in the neutral term.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2016 ◽  
Vol 6 (1) ◽  
pp. 19 ◽  
Author(s):  
Ahmad Salah Edeen Nassef ◽  
Mohammed A. Dahim

<p class="1Body">This paper was investigating the buckling problem of reinforced concrete columns considering the reinforced concrete as bi – modular material. Governing differential equations was driven. The relation between the non-dimensional transverse deflection and non-dimensional distance between centroid axis and the neutral axis "eccentricity" was drawn to enable the solution of the governing differential equation. The new approach was verified with different experimental results and different codes of practice.<strong></strong></p>


Sign in / Sign up

Export Citation Format

Share Document