Transient motion of an elastic half-space due to a moving surface line load

1967 ◽  
Vol 5 (1) ◽  
pp. 49-79 ◽  
Author(s):  
Robert G. Payton
1970 ◽  
Vol 37 (1) ◽  
pp. 205-207
Author(s):  
D. C. Gakenheimer

A method is described for obtaining an exact transient solution to the problem of an elastic half space whose surface is excited by a semi-infinite line load. The load acts normal to the surface of the half space and it has impulsive time-dependence. The resulting displacement field is discussed.


1967 ◽  
Vol 34 (4) ◽  
pp. 910-914 ◽  
Author(s):  
J. D. Achenbach ◽  
S. P. Keshava ◽  
G. Herrmann

An elastic plate supported by a semi-infinite elastic continuum is subjected to a moving line load. Both welded and smooth contact between plate and foundation are considered. Dynamic solutions for the bending moments in the plate are presented that are time-invariant relative to a coordinate system moving with the load. Resonance effects at certain critical velocities are discussed. The response of the system depends significantly on the relative stiffness of plate and half space and on the type of contact. For the relatively stiff plate certain resonances occur for smooth contact but not for welded contact. For subcritical load velocities the bending moments are calculated and compared with corresponding bending moments for a plate on a Winkler foundation. The Winkler foundation is adequate for smooth contact and small load velocities.


2021 ◽  
Vol 15 (1) ◽  
pp. 30-36
Author(s):  
Askar Kudaibergenov ◽  
Askat Kudaibergenov ◽  
Danila Prikazchikov

Abstract The article is concerned with the analysis of the problem for a concentrated line load moving at a constant speed along the surface of a pre-stressed, incompressible, isotropic elastic half-space, within the framework of the plane-strain assumption. The focus is on the near-critical regimes, when the speed of the load is close to that of the surface wave. Both steady-state and transient regimes are considered. Implementation of the hyperbolic–elliptic asymptotic formulation for the surface wave field allows explicit approximate solution for displacement components expressed in terms of the elementary functions, highlighting the resonant nature of the surface wave. Numerical illustrations of the solutions are presented for several material models.


Sign in / Sign up

Export Citation Format

Share Document