material models
Recently Published Documents


TOTAL DOCUMENTS

846
(FIVE YEARS 219)

H-INDEX

39
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Michele Di Lecce ◽  
Onaizah Onaizah ◽  
Peter Lloyd ◽  
James H. Chandler ◽  
Pietro Valdastri

The growing interest in soft robotics has resulted in an increased demand for accurate and reliable material modelling. As soft robots experience high deformations, highly nonlinear behavior is possible. Several analytical models that are able to capture this nonlinear behavior have been proposed, however, accurately calibrating them for specific materials and applications can be challenging. Multiple experimental testbeds may be required for material characterization which can be expensive and cumbersome. In this work, we propose an alternative framework for parameter fitting established hyperelastic material models, with the aim of improving their utility in the modelling of soft continuum robots. We define a minimization problem to reduce fitting errors between a soft continuum robot deformed experimentally and its equivalent finite element simulation. The soft material is characterized using four commonly employed hyperelastic material models (Neo Hookean; Mooney–Rivlin; Yeoh; and Ogden). To meet the complexity of the defined problem, we use an evolutionary algorithm to navigate the search space and determine optimal parameters for a selected material model and a specific actuation method, naming this approach as Evolutionary Inverse Material Identification (EIMI). We test the proposed approach with a magnetically actuated soft robot by characterizing two polymers often employed in the field: Dragon Skin™ 10 MEDIUM and Ecoflex™ 00-50. To determine the goodness of the FEM simulation for a specific set of model parameters, we define a function that measures the distance between the mesh of the FEM simulation and the experimental data. Our characterization framework showed an improvement greater than 6% compared to conventional model fitting approaches at different strain ranges based on the benchmark defined. Furthermore, the low variability across the different models obtained using our approach demonstrates reduced dependence on model and strain-range selection, making it well suited to application-specific soft robot modelling.


2022 ◽  
Author(s):  
Asa E. Palmer ◽  
Alexander M. Pankonien ◽  
Gregory W. Reich ◽  
Eliot S. Rudnick-Cohen ◽  
Markus P. Rumpfkeil

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 302
Author(s):  
Weirong Ge ◽  
Graham Brooker ◽  
Ritu Mogra ◽  
Jon Hyett

The nonlinear mechanical behaviour of cervical tissue causes unpredictable changes in measured elastograms when pressure is applied. These uncontrolled variables prevent the reliable measurement of tissue elasticity in a clinical setting. Measuring the nonlinear properties of tissue is difficult due to the need for both shear modulus and strain to be taken simultaneously. A simulation-based method is proposed in this paper to resolve this. This study describes the nonlinear behaviour of cervical tissue using the hyperelastic material models of Demiray–Fung and Veronda–Westmann. Elastograms from 33 low-risk patients between 18 and 22 weeks gestation were obtained. The average measured properties of the hyperelastic material models are: Demiray–Fung—A1α = 2.07 (1.65–2.58) kPa, α = 6.74 (4.07–19.55); Veronda–Westmann—C1C2 = 4.12 (3.24–5.04) kPa, C2 = 4.86 (2.86–14.28). The Demiray–Fung and Veronda–Westmann models performed similarly in fitting to the elastograms with an average root mean square deviation of 0.41 and 0.47 ms−1, respectively. The use of hyperelastic material models to calibrate shear-wave speed measurements improved the consistency of measurements. This method could be applied in a large-scale clinical setting but requires updated models and higher data resolution.


Author(s):  
G. Eiksund ◽  
I. Hoff ◽  
G. Svanø ◽  
A. Watn ◽  
E.V. Cuelho ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7534
Author(s):  
Huu-Dien Nguyen ◽  
Shyh-Chour Huang

Finite element analysis is extensively used in the design of rubber products. Rubber products can suffer from large amounts of distortion under working conditions as they are nonlinearly elastic, isotropic, and incompressible materials. Working conditions can vary over a large distortion range, and relate directly to different distortion modes. Hyperelastic material models can describe the observed material behaviour. The goal of this investigation was to understand the stress and relegation fields around the tips of cracks in nearly incompressible, isotropic, hyperelastic accouterments, to directly reveal the uniaxial stress–strain relationship of hyperelastic soft accouterments. Numerical and factual trials showed that measurements of the stress–strain relationship could duly estimate values of nonlinear strain and stress for the neo-Hookean, Yeoh, and Arruda–Boyce hyperelastic material models. Numerical models were constructed using the finite element method. It was found that results concerning strains of 0–20% yielded curvatures that were nearly identical for both the neo-Hookean, and Arruda–Boyce models. We could also see that from the beginning of the test (0–5% strain), the curves produced from our experimental results, alongside those of the neo-Hookean and Arruda–Boyce models were identical. However, the experiment’s curves, alongside those of the Yeoh model, converged at a certain point (30% strain for Pieces No. 1 and 2, and 32% for Piece No. 3). The results showed that these finite element simulations were qualitatively in agreement with the actual experiments. We could also see that the Yeoh models performed better than the neo-Hookean model, and that the neo-Hookean model performed better than the Arruda–Boyce model.


Sign in / Sign up

Export Citation Format

Share Document