On the stability of permanent rotation of a heavy solid body about a fixed point

1976 ◽  
Vol 40 (3) ◽  
pp. 370-378 ◽  
Author(s):  
V.S. Sergeev
Author(s):  
Zheng-Ming Ge ◽  
Fu-Neng Ku

The stability of the permanent rotation of the Euler, Lagrange and Kovalevskaya gyros about a fixed point in the Newtonian central force field is investigated by Liapunov direct method, which improve Leimanis’ and Rumiantsev’s result of stability conditions. For the sake of high accuracy, the first and second order terms of R-1 expressed by potential energy of the Newtonian central force field have been considered, where the R is the distance from the fixed point to the center of attraction.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4933-4944
Author(s):  
Dongseung Kang ◽  
Heejeong Koh

We obtain a general solution of the sextic functional equation f (ax+by)+ f (ax-by)+ f (bx+ay)+ f (bx-ay) = (ab)2(a2 + b2)[f(x+y)+f(x-y)] + 2(a2-b2)(a4-b4)[f(x)+f(y)] and investigate the stability of sextic Lie *-derivations associated with the given functional equation via fixed point method. Also, we present a counterexample for a single case.


2012 ◽  
Vol 2012 (1) ◽  
pp. 81 ◽  
Author(s):  
Hassan Kenary ◽  
Hamid Rezaei ◽  
Yousof Gheisari ◽  
Choonkil Park

Author(s):  
Ebrahim Esmailzadeh ◽  
Gholamreza Nakhaie-Jazar ◽  
Bahman Mehri

Abstract The transverse vibrating motion of a simple beam with one end fixed while driven harmonically along its axial direction from the other end is investigated. For a special case of zero value for the rigidity of the beam, the system reduces to that of a vibrating string with the corresponding equation of its motion. The sufficient condition for the periodic solution of the beam is then derived by means of the Green’s function and Schauder’s fixed point theorem. The criteria for the stability of the system is well defined and the condition for which the performance of the beam behaves as a nonlinear function is stated.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
S. S. Askar

Based on a nonlinear demand function and a market-clearing price, a cobweb model is introduced in this paper. A gradient mechanism that depends on the marginal profit is adopted to form the 1D discrete dynamic cobweb map. Analytical studies show that the map possesses four fixed points and only one attains the profit maximization. The stability/instability conditions for this fixed point are calculated and numerically studied. The numerical studies provide some insights about the cobweb map and confirm that this fixed point can be destabilized due to period-doubling bifurcation. The second part of the paper discusses the memory factor on the stabilization of the map’s equilibrium point. A gradient mechanism that depends on the marginal profit in the past two time steps is adopted to incorporate memory in the model. Hence, a 2D discrete dynamic map is constructed. Through theoretical and numerical investigations, we show that the equilibrium point of the 2D map becomes unstable due to two types of bifurcations that are Neimark–Sacker and flip bifurcations. Furthermore, the influence of the speed of adjustment parameter on the map’s equilibrium is analyzed via numerical experiments.


1990 ◽  
Vol 10 (2) ◽  
pp. 209-229 ◽  
Author(s):  
Dov Aharonov ◽  
Uri Elias

AbstractThe stability of a fixed point of an area-preserving transformation in the plane is characterized by the invariant curves which surround it. The existence of invariant curves had been extensively studied for elliptic fixed points. Here we study the similar problem for parabolic fixed points. In particular we are interested in the case where the fixed point is at infinity.


Sign in / Sign up

Export Citation Format

Share Document