Synthesis of the optimal control for a linear system with two phase constraints

1984 ◽  
Vol 48 (4) ◽  
pp. 413-418
Author(s):  
B.E. Fedunov ◽  
S.N. Khlebnikov
1980 ◽  
Vol 20 (06) ◽  
pp. 521-532 ◽  
Author(s):  
A.T. Watson ◽  
J.H. Seinfeld ◽  
G.R. Gavalas ◽  
P.T. Woo

Abstract An automatic history-matching algorithm based onan optimal control approach has been formulated forjoint estimation of spatially varying permeability andporosity and coefficients of relative permeabilityfunctions in two-phase reservoirs. The algorithm usespressure and production rate data simultaneously. The performance of the algorithm for thewaterflooding of one- and two-dimensional hypotheticalreservoirs is examined, and properties associatedwith the parameter estimation problem are discussed. Introduction There has been considerable interest in thedevelopment of automatic history-matchingalgorithms. Most of the published work to date onautomatic history matching has been devoted tosingle-phase reservoirs in which the unknownparameters to be estimated are often the reservoirporosity (or storage) and absolute permeability (ortransmissibility). In the single-phase problem, theobjective function usually consists of the deviationsbetween the predicted and measured reservoirpressures at the wells. Parameter estimation, orhistory matching, in multiphase reservoirs isfundamentally more difficult than in single-phasereservoirs. The multiphase equations are nonlinear, and in addition to the porosity and absolutepermeability, the relative permeabilities of each phasemay be unknown and subject to estimation. Measurements of the relative rates of flow of oil, water, and gas at the wells also may be available forthe objective function. The aspect of the reservoir history-matchingproblem that distinguishes it from other parameterestimation problems in science and engineering is thelarge dimensionality of both the system state and theunknown parameters. As a result of this largedimensionality, computational efficiency becomes aprime consideration in the implementation of anautomatic history-matching method. In all parameterestimation methods, a trade-off exists between theamount of computation performed per iteration andthe speed of convergence of the method. Animportant saving in computing time was realized insingle-phase automatic history matching through theintroduction of optimal control theory as a methodfor calculating the gradient of the objective functionwith respect to the unknown parameters. Thistechnique currently is limited to first-order gradientmethods. First-order gradient methods generallyconverge more slowly than those of higher order.Nevertheless, the amount of computation requiredper iteration is significantly less than that requiredfor higher-order optimization methods; thus, first-order methods are attractive for automatic historymatching. The optimal control algorithm forautomatic history matching has been shown toproduce excellent results when applied to field problems. Therefore, the first approach to thedevelopment of a general automatic history-matchingalgorithm for multiphase reservoirs wouldseem to proceed through the development of anoptimal control approach for calculating the gradientof the objective function with respect to theparameters for use in a first-order method. SPEJ P. 521^


Author(s):  
Malte Braack ◽  
Markus Klein ◽  
Andreas Prohl ◽  
Benjamin Tews

2020 ◽  
Vol 26 (2) ◽  
pp. 24-31
Author(s):  
Omer Aydogdu ◽  
Mehmet Latif Levent

In this study, a new controller design was created to increase the control performance of a variable loaded time varying linear system. For this purpose, a state estimation with reduced order observer and adaptive-LQR (Linear–Quadratic Regulator) control structure was offered. Initially, to estimate the states of the system, a reduced-order observer was designed and used with LQR control method that is one of the optimal control techniques in the servo system with initial load. Subsequently, a Lyapunov-based adaptation mechanism was added to the LQR control to provide optimal control for varying loads as a new approach in design. Thus, it was aimed to eliminate the variable load effects and to increase the stability of the system. In order to demonstrate the effectiveness of the proposed method, a variable loaded rotary servo system was modelled as a time-varying linear system and used in simulations in Matlab-Simulink environment. Based on the simulation results and performance measurements, it was observed that the proposed method increases the system performance and stability by minimizing variable load effect.


Author(s):  
Yury Evtushenko ◽  
Vladimir Zubov ◽  
Anna Albu

The optimal control of the metal solidification process in casting is considered. Quality of the obtained detail greatly depends on how the crystallization process proceeds. It is known that to obtain a model of a good quality it is desirable that the phase interface would be as close as possible to a plane and that the speed of its motion would be close to prescribed. The proposed mathematical model of the crystallization process is based on a three dimensional two phase initial-boundary value problem of the Stefan type. The velocity of the mold in the furnace is used as the control. The control satisfying the technological requirements is determined by solving the posed optimal control problem. The optimal control problem was solved numerically using gradient optimization methods. The effective method is proposed for calculation of the cost functional gradient. It is based on the fast automatic differentiation technique and produces the exact gradient for the chosen approximation of the optimal control problem.


Sign in / Sign up

Export Citation Format

Share Document