input delay
Recently Published Documents


TOTAL DOCUMENTS

881
(FIVE YEARS 271)

H-INDEX

45
(FIVE YEARS 8)

Automation ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 47-83
Author(s):  
Marcel Nicola

This article presents the study of the stability of single-input and multiple-input systems with point or distributed state delay and input delay and input saturation. By a linear transformation applied to the initial system with delay, a system is obtained without delay, but which is equivalent from the point of view of stability. Next, using sufficient conditions for the global asymptotic stability of linear systems with bounded control, new sufficient conditions are obtained for global asymptotic stability of the initial system with state delay and input delay and input saturation. In addition, the article presents the results on the instability and estimation of the stability region of the delay and input saturation system. The numerical simulations confirming the results obtained on stability were performed in the MATLAB/Simulink environment. A method is also presented for solving a transcendental matrix equation that results from the process of equating the stability of the systems with and without delay, a method which is based on the computational intelligence, namely, the Particle Swarm Optimization (PSO) method.


2021 ◽  
Vol 2 ◽  
Author(s):  
Saeed Salavati ◽  
Karolos Grigoriadis ◽  
Matthew Franchek

This paper examines the control design for parameter-dependent input-delay linear parameter-varying (LPV) systems with saturation constraints and matched input disturbances. A gain-scheduled dynamic output feedback controller, coupled with a disturbance observer to cancel out input disturbance effects, was augmented with an anti-windup compensator to locally stabilize the input-delay LPV system under saturation, model uncertainty, and exogenous disturbances. Sufficient delay-dependent conditions to asymptotically stabilize the closed-loop system were derived using Lyapunov-Krasovskii functionals and a modified generalized sector condition to address the input saturation nonlinearity. The level of disturbance rejection was characterized via the closed-loop induced L2-norm of the closed-loop system in the form of linear matrix inequality (LMI) constraints. The results are examined in the context of the mean arterial pressure (MAP) control in the clinical resuscitation of critical hypotensive patients. The MAP variation response to the injection of vasopressor drugs was modeled as an LPV system with a varying input delay and was susceptible to model uncertainty and input/output disturbances. A Bayesian filtering method known as the cubature Kalman filter (CKF) was used to estimate the instantaneous values of the parameters. The varying delay was estimated via a multiple-model approach. The proposed input-delay LPV control was validated in closed-loop simulations to demonstrate its merits and capabilities in the presence of drug administration constraints.


Automatika ◽  
2021 ◽  
Vol 63 (1) ◽  
pp. 122-131
Author(s):  
V. Artheec Kumar ◽  
Zhenwei Cao ◽  
Zhihong Man ◽  
Raymond Cheui ◽  
Don Bombuwela

Sign in / Sign up

Export Citation Format

Share Document