On the controlled rotation of a system of two rigid bodies with elastic elements

1984 ◽  
Vol 48 (2) ◽  
pp. 164-170 ◽  
Author(s):  
V.E. Berbyuk
2010 ◽  
Vol 44-47 ◽  
pp. 1273-1278 ◽  
Author(s):  
Liu Lei

As a type of numerical approach to dynamics of gears, multibody dynamics method can handle realistic cases of contact modeling with acceptable accuracy and considerably less computational effort. The ability to simulate contact between teeth has become an essential topic in multibody dynamics. Fully rigid method is not suited for a high quality of the analysis to take into account some elasticity in the model of meshing gear wheels. In our new approach the circumferentially rotatable rigid teeth and elastic elements composed of rotational spring-damper combinations are hereby put forward. The teeth and the body of each gear wheel are still regarded as rigid bodies, but they are connected with each other by elastic elements. Besides, Lankarani & Nikravesh Contact Model is utilized, which counts energy dissipation by means of viscous damping. Both large motions with revolutions and important elasticity are considered in this teeth-wheel multibody system model. Two examples are provided in which the simulation results of completely rigid method, the approach in [10], our new approach and finite element methods are compared. Comparisons indicate that our newly developed approach is more suitable for modeling multibody geared systems.


2015 ◽  
Vol 764-765 ◽  
pp. 155-159
Author(s):  
Thanh Phong Dao ◽  
Shyh Chour Huang

Traditional bearings with one degree of freedom (1-DOF) translation are due to sliding between rigid bodies; however, the wear, backlash, and low precision are existing defects. For high-precision mechanism to overcome these limitations, a flexible bearing with 1-DOF translation in this paper is designed alternatively by the use of the concept of compliant mechanism because its motion replies on elastic elements. Besides, the fatigue strength, fracture, and crack are frequently appeared as mechanical failures due to high stress at the fixed end of flexible hinges. To reduce mechanical failures, experiments are conducted by an L27orthogonal array of the Taguchi multiple quality method to optimize design parameters, including an applied force and the length, width, thickness, and filleted radius of flexible hinges considering the stress concentration. The results demonstrate that the resulting stress of the new design flexible bearing is almost 99.7% smaller than that of the original design.


2006 ◽  
Vol 2006 ◽  
pp. 1-11 ◽  
Author(s):  
Amalia Pielorz ◽  
Monika Skóra

Dynamic investigations of multimass discrete-continuous systems having variable moment of inertia are performed. The systems are torsionally deformed and consist of an arbitrary number of elastic elements connected by rigid bodies. The problem is nonlinear and it is linearized after appropriate transformations. It is shown that such problems can be investigated using the wave approach. Some analytical considerations and numerical calculations are done for a two-mass system with a special case of boundary conditions.


1988 ◽  
Author(s):  
Y.-G. Oh ◽  
N. Sreenath ◽  
P. S. Krishnaprasad ◽  
J. E. Marsden

Author(s):  
Mohamed Gharib ◽  
Yildirim Hurmuzlu

Author(s):  
Peter Mann

This chapter discusses virtual work, returning to the Newtonian framework to derive the central Lagrange equation, using d’Alembert’s principle. It starts off with a discussion of generalised force, applied force and constraint force. Holonomic constraints and non-holonomic constraint equations are then investigated. The corresponding principles of Gauss (Gauss’s least constraint) and Jourdain are also documented and compared to d’Alembert’s approach before being generalised into the Mangeron–Deleanu principle. Kane’s equations are derived from Jourdain’s principle. The chapter closes with a detailed covering of the Gibbs–Appell equations as the most general equations in classical mechanics. Their reduction to Hamilton’s principle is examined and they are used to derive the Euler equations for rigid bodies. The chapter also discusses Hertz’s least curvature, the Gibbs function and Euler equations.


Author(s):  
Peter Mann

This chapter discusses the importance of circular motion and rotations, whose applications to chemical systems are plentiful. Circular motion is the book’s first example of a special case of motion using the laws developed in previous chapters. The chapter begins with the basic definitions of circular motion; as uniform rotation around a principle axis is much easier to consider, it is the focus of this chapter and is used to develop some key ideas. The chapter discusses angular displacement, angular velocity, angular momentum, torque, rigid bodies, orbital and spin momenta, inertia tensors and non-inertial frames and explores fictitious forces as well as transformations in rotating frames.


Sign in / Sign up

Export Citation Format

Share Document