scholarly journals Brownian motion, Lp properties of Schrödinger operators and the localization of binding

1980 ◽  
Vol 35 (2) ◽  
pp. 215-229 ◽  
Author(s):  
Barry Simon

2017 ◽  
Vol 29 (05) ◽  
pp. 1750016 ◽  
Author(s):  
Erik Makino Bakken ◽  
Trond Digernes ◽  
David Weisbart

We give a stochastic proof of the finite approximability of a class of Schrödinger operators over a local field, thereby completing a program of establishing in a non-Archimedean setting corresponding results and methods from the Archimedean (real) setting. A key ingredient of our proof is to show that Brownian motion over a local field can be obtained as a limit of random walks over finite grids. Also, we prove a Feynman–Kac formula for the finite systems, and show that the propagator at the finite level converges to the propagator at the infinite level.



2012 ◽  
Vol 24 (06) ◽  
pp. 1250013 ◽  
Author(s):  
FUMIO HIROSHIMA ◽  
TAKASHI ICHINOSE ◽  
JÓZSEF LŐRINCZI

Path integral representations for generalized Schrödinger operators obtained under a class of Bernstein functions of the Laplacian are established. The one-to-one correspondence of Bernstein functions with Lévy subordinators is used, thereby the role of Brownian motion entering the standard Feynman–Kac formula is taken here by subordinate Brownian motion. As specific examples, fractional and relativistic Schrödinger operators with magnetic field and spin are covered. Results on self-adjointness of these operators are obtained under conditions allowing for singular magnetic fields and singular external potentials as well as arbitrary integer and half-integer spin values. This approach also allows to propose a notion of generalized Kato class for which an Lp-Lq bound of the associated generalized Schrödinger semigroup is shown. As a consequence, diamagnetic and energy comparison inequalities are also derived.









2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Luca Fresta

AbstractWe study discrete random Schrödinger operators via the supersymmetric formalism. We develop a cluster expansion that converges at both strong and weak disorder. We prove the exponential decay of the disorder-averaged Green’s function and the smoothness of the local density of states either at weak disorder and at energies in proximity of the unperturbed spectrum or at strong disorder and at any energy. As an application, we establish Lifshitz-tail-type estimates for the local density of states and thus localization at weak disorder.



Sign in / Sign up

Export Citation Format

Share Document