path integral representation
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Chenghan Li ◽  
Gregory A. Voth

Ab initio molecular dynamics (AIMD) has become one of the most popular and robust approaches for modeling complicated chemical, liquid, and material systems. However, the formidable computational cost often limits its widespread application in simulations of the largest scale systems. The situation becomes even more severe in cases where the hydrogen nuclei may be better described as quantized particles using a path integral representation. Here, we present a computational approach that combines machine learning with recent advances in path integral contraction schemes, and we achieve a two-orders-of-magnitude acceleration over direct path integral AIMD simulation while at the same time maintaining its accuracy.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
N. Ahmadiniaz ◽  
V. M. Banda Guzmán ◽  
F. Bastianelli ◽  
O. Corradini ◽  
J. P. Edwards ◽  
...  

Abstract In the first part of this series, we employed the second-order formalism and the “symbol” map to construct a particle path-integral representation of the electron propagator in a background electromagnetic field, suitable for open fermion-line calculations. Its main advantages are the avoidance of long products of Dirac matrices, and its ability to unify whole sets of Feynman diagrams related by permutation of photon legs along the fermion lines. We obtained a Bern-Kosower type master formula for the fermion propagator, dressed with N photons, in terms of the “N-photon kernel,” where this kernel appears also in “subleading” terms involving only N − 1 of the N photons.In this sequel, we focus on the application of the formalism to the calculation of on-shell amplitudes and cross sections. Universal formulas are obtained for the fully polarised matrix elements of the fermion propagator dressed with an arbitrary number of photons, as well as for the corresponding spin-averaged cross sections. A major simplification of the on-shell case is that the subleading terms drop out, but we also pinpoint other, less obvious simplifications.We use integration by parts to achieve manifest transversality of these amplitudes at the integrand level and exploit this property using the spinor helicity technique. We give a simple proof of the vanishing of the matrix element for “all +” photon helicities in the massless case, and find a novel relation between the scalar and spinor spin-averaged cross sections in the massive case. Testing the formalism on the standard linear Compton scattering process, we find that it reproduces the known results with remarkable efficiency. Further applications and generalisations are pointed out.


Author(s):  
Vladimir S Filinov ◽  
Pavel Levashov ◽  
Alexander Larkin

Abstract To account for the interference effects of the Coulomb and exchange interactions of electrons the new path integral representation of the density matrix has been developed in the canonical ensemble at finite temperatures. The developed representation allows to reduce the notorious ``fermionic sign problem'' in the path integral Monte Carlo simulations of fermionic systems. The obtained results for pair distribution functions in plasma and uniform electron gas demonstrate the short--range quantum ordering of electrons associated in literature with exchange--correlation excitons. The charge estimations show the excitonic electric neutrality. Comparison of the internal energy with available ones in the literature demonstrates that the short range ordering does not give noticeable contributions in integral thermodynamic characteristics. This fine physical effect was not observed earlier in the standard path integral Monte Carlo simulations.


2021 ◽  
Author(s):  
Chenghan Li ◽  
Gregory A. Voth

Ab initio molecular dynamics (AIMD) has become one of the most popular and robust approaches for modeling complicated chemical, liquid, and material systems. However, the formidable computational cost often limits its widespread application in simulations of the largest scale systems. The situation becomes even more severe in cases where the hydrogen nuclei may be better described as quantized particles using a path integral representation. Here, we present a computational approach that combines machine learning with recent advances in path integral contraction schemes, and we achieve a two-order-of-magnitude acceleration over direct path integral AIMD simulation while at the same time maintaining its accuracy.


Author(s):  
Jean Zinn-Justin

Functional integrals are basic tools to study first quantum mechanics (QM), and quantum field theory (QFT). The path integral formulation of QM is well suited to the study of systems with an arbitrary number of degrees of freedom. It makes a smooth transition between nonrelativistic QM and QFT possible. The Euclidean functional integral also emphasizes the deep connection between QFT and the statistical physics of systems with short-range interactions near a continuous phase transition. The path integral representation of the matrix elements of the quantum statistical operator e-β H for Hamiltonians of the simple separable form p2/2m +V(q) is derived. To the path integral corresponds a functional measure and expectation values called correlation functions, which are generalized moments, and related to quantum observables, after an analytic continuation in time. The path integral corresponding to the Euclidean action of a harmonic oscillator, to which is added a time-dependent external force, is calculated explicitly. The result is used to generate Gaussian correlation functions and also to reduce the evaluation of path integrals to perturbation theory. The path integral also provides a convenient tool to derive semi-classical approximations.


Author(s):  
Jean Zinn-Justin

The functional integral representation of the density matrix at thermal equilibrium in non-relativistic quantum mechanics (QM) with many degrees of freedom, in the grand canonical formulation is introduced. In QM, Hamiltonians H(p,q) can be also expressed in terms of creation and annihilation operators, a method adapted to the study of perturbed harmonic oscillators. In the holomorphic formalism, quantum operators act by multiplication and differentiation on a vector space of analytic functions. Alternatively, they can also be represented by kernels, functions of complex variables that correspond in the classical limit to a complex parametrization of phase space. The formalism is adapted to the description of many-body boson systems. To this formalism corresponds a path integral representation of the density matrix at thermal equilibrium, where paths belong to complex spaces, instead of the more usual position–momentum phase space. A parallel formalism can be set up to describe systems with many fermion degrees of freedom, with Grassmann variables replacing complex variables. Both formalisms can be generalized to quantum gases of Bose and Fermi particles in the grand canonical formulation. Field integral representations of the corresponding quantum partition functions are derived.


Author(s):  
Jean Zinn-Justin

In Chapter 2, a path integral representation of the quantum operator e-β H in the case of Hamiltonians H of the separable form p 2/2m + V(q) has been constructed. Here, the construction is extended to Hamiltonians that are more general functions of phase space variables. This results in integrals over paths in phase space involving the action expressed in terms of the classical Hamiltonian H(p,q). However, it is shown that, in the general case, the path integral is not completely defined, and this reflects the problem that the classical Hamiltonian does not specify completely the quantum Hamiltonian, due to the problem of ordering quantum operators in products. When the Hamiltonian is a quadratic function of the momentum variables, the integral over momenta is Gaussian and can be performed. In the separable example, the path integral of Chapter 2 is recovered. In the case of the charged particle in a magnetic field a more general form is found, which is ambiguous, since a problem of operator ordering arises, and the ambiguity must be fixed. Hamiltonians that are general quadratic functions provide other important examples, which are analysed thoroughly. Such Hamiltonians appear in the quantization of the motion on Riemannian manifolds. There, the problem of ambiguities is even more severe. The problem is illustrated by the analysis of the quantization of the free motion on the sphere SN−1.


Author(s):  
Jean Zinn-Justin

Chapter 4 has introduced the functional integral representation of the quantum statistical operators and thus, formally, evolution in imaginary or Euclidean time. By contrast, to calculate the evolution operator and the scattering S-matrix elements, quantities relevant to particle physics, it is necessary to make a continuation from imaginary to real time. However, the representation of the S-matrix follows from additional considerations. To illustrate the power of the formalism, we show how to recover the perturbative expansion of the scattering amplitude, some semi-classical approximations, and the eikonal approximation. When the asymptotic states at large time are eigenstates of the harmonic oscillator, instead of free particles, the holomorphic formalism becomes useful. A simple generalization of the path integral of Chapter 4 leads to the corresponding path integral representation of the S-matrix. In the case of the Bose gas, the evolution operator is then given by a holomorphic field integral. A parallel formalism leads to an analogous representation for the evolution operator of a system of non-relativistic fermions.


2021 ◽  
Author(s):  
Jianhao M. Yang

Abstract Relational formulation of quantum mechanics is based on the idea that relational properties among quantum systems, instead of the independent properties of a quantum system, are the most fundamental elements to construct quantum mechanics. In the recent works (J. M. Yang, Sci. Rep. 8:13305, 2018), basic relational quantum mechanics framework is formulated to derive quantum probability, Born's Rule, Schr\"{o}dinger Equations, and measurement theory. This paper gives a concrete implementation of the relational probability amplitude by extending the path integral formulation. The implementation not only clarifies the physical meaning of the relational probability amplitude, but also gives several important applications. For instance, the double slit experiment can be elegantly explained. A path integral representation of the reduced density matrix of the observed system can be derived. Such representation is shown valuable to describe the interaction history of the measured system and a series of measuring systems. More interestingly, it allows us to develop a method to calculate entanglement entropy based on path integral and influence functional. Criteria of entanglement is proposed based on the properties of influence functional, which may be used to determine entanglement due to interaction between a quantum system and a classical field.


Sign in / Sign up

Export Citation Format

Share Document