Structure of circular copies of the 412 transposable element present in Drosophila melanogaster tissue culture cells, and isolation of a free 412 long terminal repeat

1984 ◽  
Vol 180 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Barbara M. Shepherd ◽  
David J. Finnegan
1993 ◽  
Vol 13 (7) ◽  
pp. 4098-4106 ◽  
Author(s):  
T Shinomiya ◽  
S Ina

We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes.


1992 ◽  
Vol 12 (2) ◽  
pp. 847-855
Author(s):  
G Raychaudhuri ◽  
S R Haynes ◽  
A L Beyer

Pre-mRNAs cotranscriptionally associate with a small group of proteins to form heterogeneous nuclear ribonucleoprotein (hnRNP) complexes. We have previously identified two genes in Drosophila melanogaster, Hrb98DE and Hrb87F (i.e., genes at 98DE and 87F encoding putative hnRNA binding proteins), which encode five protein species homologous to the mammalian A-B hnRNP proteins. The studies presented herein show that antibodies against the RNP domains of Hrb98DE reacted with 10 to 15 distinct spots of 38 to 40 kDa in the basic region of two-dimensional gels. These nuclear proteins bound single-stranded nucleic acids and were extracted from Drosophila tissue culture cells as 40 to 80S hnRNP complexes in association with 300 to 800 nucleotide fragments of RNA. The peak of poly(A)+ RNA sequences was coincident with the peak of HRB proteins in sucrose gradients, strongly suggesting that the HRB complexes identified are Drosophila hnRNP complexes. The repertoire of HRB proteins did not change significantly during embryogenesis and was similar to that observed in Drosophila tissue culture cells. Analyses with peptide-specific antisera demonstrated that the major proteins in the hnRNP complex were encoded by the two genes previously identified. Although the Drosophila HRB proteins are only approximately 60% identical throughout the RNP domains to the mammalian A-B hnRNP proteins, features of the basic pre-mRNA packaging mechanism appear to be highly conserved between D. melanogaster and mammals.


1988 ◽  
Vol 8 (5) ◽  
pp. 1877-1886
Author(s):  
B M Benton ◽  
S Berrios ◽  
P A Fisher

A 75-kilodalton polypeptide has been identified which copurifies with karyoskeletal protein-enriched fractions prepared from Drosophila melanogaster embryos. Results of indirect immunofluorescence experiments suggest that this protein, here designated p75, is primarily associated with puffed regions of larval salivary gland polytene chromosomes. In nonpolytenized Schneider 2 tissue culture cells, p75 appeared to be localized throughout the nuclear interior during interphase. In mitotic cells, p75 was redistributed diffusely. A possible role for karyoskeletal elements in transcriptional regulation is discussed.


Genetics ◽  
2015 ◽  
Vol 201 (4) ◽  
pp. 1319-1328 ◽  
Author(s):  
Sathiya N. Manivannan ◽  
Thomas L. Jacobsen ◽  
Peter Lyon ◽  
Bhavani Selvaraj ◽  
Peter Halpin ◽  
...  

1988 ◽  
Vol 8 (1) ◽  
pp. 91-95 ◽  
Author(s):  
J Bell ◽  
L Neilson ◽  
M Pellegrini

In Drosophila tissue culture cells, the synthesis of ribosomal proteins was inhibited by a 1-h 37 degrees C heat shock. Ribosomal protein synthesis was repressed to a greater extent than that of most other proteins synthesized by these cells at 25 degrees C. After a 1-h heat shock, when the cells were returned to 25 degrees C, the ribosomal proteins were much slower than most other 25 degrees C proteins to return to pre-heat shock levels of synthesis. Relative to one another, all the ribosomal proteins were inhibited and later recovered to normal levels of synthesis at the same rate and to the same extent. Unlike the ribosomal proteins, the precursor to the large rRNAs was continually synthesized during heat shock, although at a slightly reduced level, but was not processed. It was rapidly degraded, with a half-life of approximately 16 min. Pre-heat shock levels of synthesis, stability, and correct processing were restored only when ribosomal protein synthesis returned to at least 50% of that seen in non-heat-shocked cells.


1986 ◽  
Vol 6 (12) ◽  
pp. 4767-4769
Author(s):  
A A Vivino ◽  
M D Smith ◽  
K W Minton

A gene isolated by screening Drosophila melanogaster tissue culture cells for DNA damage regulation was also found to be regulated by heat shock. After UV irradiation or heat shock, induction is at the transcriptional level and results in the accumulation of a 1.0-kilobase polyadenylated transcript. The restriction map of the clone bears no resemblance to the known heat shock genes, which are shown to be uninduced by UV irradiation.


1993 ◽  
Vol 13 (7) ◽  
pp. 4098-4106
Author(s):  
T Shinomiya ◽  
S Ina

We showed previously that DNA replication initiates at multiple sites in the 5-kb histone gene repeating unit in early embryos of Drosophila melanogaster. The present report shows evidence that replication in the same chromosomal region initiates at multiple sites in tissue culture cells as well. First, we analyzed replication intermediates by the two-dimensional gel electrophoretic replicon mapping method and detected bubble-form replication intermediates for all fragments restricted at different sites in the repeating unit. Second, we analyzed bromodeoxyuridine-labeled nascent strands amplified by the polymerase chain reaction method and detected little differences in the size distribution of nascent strands specific to six short segments located at different sites in the repeating unit. These results strongly suggest that DNA replication initiates at multiple sites located within the repeating unit. We also found several replication pause sites located at 5' upstream regions of some histone genes.


Sign in / Sign up

Export Citation Format

Share Document