transcriptional level
Recently Published Documents


TOTAL DOCUMENTS

2772
(FIVE YEARS 1265)

H-INDEX

100
(FIVE YEARS 22)

2023 ◽  
Vol 83 ◽  
Author(s):  
S. M. S. Shah ◽  
F. Ullah

Abstract MicroRNAs (miRNAs) are essential nonprotein-coding genes. In a range of organisms, miRNAs has been reported to play an essential role in regulating gene expressions at post-transcriptional level. They participate in most of the stress responsive processes in plants. Drought is an ultimate abiotic stress that affects the crop production. Therefore understanding drought stress responses are essential to improve the production of agricultural crops. Throughout evolution, plants have developed their own defense systems to cope with the adversities of environmental stresses. Among defensive mechanisms include the regulations of gene expression by miRNAs. Drought stress regulates the expression of some of the functionally conserved miRNAs in different plants. The given properties of miRNAs provide an insight to genetic alterations and enhancing drought resistance in cereal crops. The current review gives a summary to regulatory mechanisms in plants as well as miRNAs response to drought stresses in cereal crops. Some possible approaches and guidelines for the exploitation of drought stress miRNA responses to improve cereal crops are also described.


2022 ◽  
Author(s):  
Juliane Grimm ◽  
Raj Bhayadia ◽  
Lucie Gack ◽  
Dirk Heckl ◽  
Jan-Henning Klusmann

Children with Down syndrome (DS) are predisposed to developing megakaryoblastic leukemia (ML-DS) and often experience severe toxicities from chemotherapy, highlighting the need for targeted therapies with beneficial risk profiles. The genomic landscape of ML-DS is characterized by a combination of mutations in signaling pathway genes and epigenetic modifiers, while aberrant lysine specific demethylase 1 (LSD1) and JAK-STAT activation have both been implicated in leukemogenesis. Here, we demonstrate that combined LSD1 and JAK1/2 inhibition exerts synergistic anti-leukemic effects specifically in ML-DS, both in vitro and in patient derived xenografts in vivo. The JAK1/2 inhibitor ruxolitinib enhanced the LSD1 inhibitor-induced differentiation, proliferation arrest and apoptosis in patient-derived leukemic blasts. At the transcriptional level, the combination synergistically repressed gene expression signatures essential for cell division. We further observed an immunogenic gene expression pattern in the form of increased cytokine signaling, which - by sensitizing ML-DS blasts to the JAK-STAT signaling blockade induced by ruxolitinib - could explain the increased susceptibility of ML-DS blasts to combination therapy. Taken together, we establish combined LSD1 and JAK-STAT inhibition as an efficacious therapeutic regimen specifically designed to target important steps in ML-DS leukemogenesis, paving the way for targeted therapies in this entity.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Nicholas J. Barrett ◽  
Jakob Thyrring ◽  
Elizabeth M. Harper ◽  
Mikael K. Sejr ◽  
Jesper G. Sørensen ◽  
...  

Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‰) and low salinities (15‰) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‰, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‰, 15‰ and 5‰) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.


Author(s):  
Shashi Bala ◽  
Mrigya Babuta ◽  
Donna Catalano ◽  
Aman Saiju ◽  
Gyongyi Szabo

Exosomes are membrane vesicles released by various cell types into the extracellular space under different conditions including alcohol exposure. Exosomes are involved in intercellular communication and as mediators of various diseases. Alcohol use causes oxidative stress that promotes exosome secretion. Here, we elucidated the effects of alcohol on exosome biogenesis and secretion using human hepatocytes. We found that alcohol treatment induces the expression of genes involved in various steps of exosome formation. Expression of Rab proteins such as Rab1a, Rab5c, Rab6, Rab10, Rab11, Rab27a and Rab35 were increased at the mRNA level in primary human hepatocytes after alcohol treatment. Rab5, Rab6 and Rab11 showed significant induction in the livers of patients with alcohol-associated liver disease. Further, alcohol treatment also led to the induction of syntenin, vesicle-associated membrane proteins (VAMPs), and syntaxin that all play various roles in exosome biogenesis and secretion. VAMP3, VAMP5, VAPb, and syntaxin16 mRNA transcripts were increased in alcohol treated cells and in the livers of alcohol-associated liver disease (ALD) patients. Induction in these genes was associated with increases in exosome secretion in alcohol treated hepatocytes. We found that hepatocyte enriched miR-192 and miR-122 levels were significantly decreased in alcohol treated hepatocytes whereas their levels were increased in the cell-free supernatant. The primary transcripts of miR-192 and miR-122 were reduced in alcohol treated hepatocytes, suggesting alcohol partially affects these miRNAs at the transcriptional level. We found that miR-192 has putative binding sites for genes involved in exosome secretion. Inhibition of miR-192 in human hepatoma cells caused a significant increase in Rab27a, Rab35, syntaxin7 and syntaxin16 and a concurrent increase in exosome secretion, suggesting miR-192 regulates exosomes release in hepatocytes. Collectively, our results reveal that alcohol modulates Rabs, VAMPs and syntaxins directly and partly via miR-192 to induce exosome machinery and release.


BMC Medicine ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Feargal J. Ryan ◽  
Christopher M. Hope ◽  
Makutiro G. Masavuli ◽  
Miriam A. Lynn ◽  
Zelalem A. Mekonnen ◽  
...  

Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after infection, a condition referred to as “long COVID”, post-acute sequelae of COVID-19 (PASC), post-acute COVID-19 syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is known about the molecular underpinnings of these long-term effects. Methods We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular, and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate, severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection. Results Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils, CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were referred to a long COVID clinic compared to those who were not. Conclusions Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the persistence of symptoms associated with long COVID in some individuals.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261090
Author(s):  
Muhammad Umair Sial ◽  
Khalid Mehmood ◽  
Shafqat Saeed ◽  
Mureed Husain ◽  
Khawaja Ghulam Rasool ◽  
...  

Green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)] is a significant pest with a known history of insecticide resistance. Neonicotinoids could manage this pest; however, their frequent use led to the evolution of resistance in field populations of M. persicae. Toxicity data for neonicotinoid insecticides synergized with pipernyl butoxide (PBO) in a field population (FP) were collected and compared to a laboratory susceptible clone (SC) of aphids. The enhanced expression of metabolic resistance-related cytochrome P450 gene CYP6CY3 and an arginine-threonine substitution were detected in FP, causing a single point mutation (R81T) at β1 subunit of nicotinic acetylcholine receptor (nAChR) within D loop. High level of resistance to imidacloprid was developed in FP with 101-fold resistance ratio and moderate resistance level (10.9-fold) to acetamiprid. The results of PBO synergized bioassay suggested that cytochrome P450 enzymes were involved in the resistance to neonicotinoids. The mRNA transcriptional level of CYP6CY3 gene was significantly higher (3.74 fold) in FP compared to SC. The R81T mutation associated with neonicotinoid resistance had 26% resistant allele frequency in FP. Both P450 enzymes and R81T mutation of nAChR were found in field-evolved neonicotinoid resistance. It is concluded that field-evolved resistance in green peach aphid could be managed by using appropriate synergists such as PBO.


2022 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Sule Canberk ◽  
Marcelo Correia ◽  
Ana Rita Lima ◽  
Massimo Bongiovanni ◽  
Manuel Sobrinho-Simões ◽  
...  

DICER1 protein is a member of the ribonuclease (RNAse) III family with a key role in the biogenesis of microRNAs (miRNA) and in microRNA processing, potentially affecting gene regulation at the post-transcriptional level. The role of DICER1 and its relevance to thyroid cellular processes and tumorigenesis have only recently been explored, following the acknowledgement that DICER1 germline and somatic changes can contribute not only to non-toxic multinodule goiter (MNG) lesions detected in individuals of affected families but also to a series of childhood tumours, including thyroid neoplasms, which can be identified from early infancy up until the decade of 40s. In a context of DICER1 germline gene mutation, thyroid lesions have recently been given importance, and they may represent either an index event within a syndromic context or the isolated event that may trigger a deeper and broader genomic analysis screening of individuals and their relatives, thereby preventing the consequences of a late diagnosis of malignancy. Within the syndromic context MNG is typically the most observed lesion. On the other hand, in a DICER1 somatic mutation context, malignant tumours are more common. In this review we describe the role of DICER protein, the genomic events that affect the DICER1 gene and their link to tumorigenesis as well as the frequency and pattern of benign and malignant thyroid lesions and the regulation of DICER1 within the thyroidal environment.


Rice ◽  
2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Lei Liu ◽  
Ying Zhou ◽  
Feng Mao ◽  
Yujuan Gu ◽  
Ziwei Tang ◽  
...  

AbstractGrain size is subtly regulated by multiple signaling pathways in rice. Alternative splicing is a general mechanism that regulates gene expression at the post-transcriptional level. However, to our knowledge, the molecular mechanism underlying grain size regulation by alternative splicing is largely unknown. GS3, the first identified QTL for grain size in rice, is regulated at the transcriptional and post-translational level. In this study, we identified that GS3 is subject to alternative splicing. GS3.1 and GS3.2, two dominant isoforms, accounts for about 50% and 40% of total transcripts, respectively. GS3.1 encodes the full-length protein, while GS3.2 generated a truncated proteins only containing OSR domain due to a 14 bp intronic sequence retention. Genetic analysis revealed that GS3.1 overexpressors decreased grain size, but GS3.2 showed no significant effect on grain size. Furthermore, we demonstrated that GS3.2 disrupts GS3.1 signaling by competitive occupation of RGB1. Therefore, we draw a conclusion that the alternative splicing of GS3 decreases the amount of GS3.1 and GS3.2 disrupts the GS3.1 signaling to inhibit the negative effects of GS3.1 to fine-tune grain size. Moreover, the mechanism is conserved in cereals rather than in Cruciferae, which is associated with its effects on grain size. The results provide a novel, conserved and important mechanism underlying grain size regulation at the post-transcriptional level in cereals.


Author(s):  
Jiashu Pan ◽  
Feng Liu ◽  
Xiaoli Xiao ◽  
Ruohui Xu ◽  
Liang Dai ◽  
...  

Abstract Background Colorectal carcinoma (CRC) is the third most common cancer and second most common cause of cancer-related deaths worldwide. Ribonucleic acid (RNA) N6-methyladnosine (m6A) and methyltransferase-like 3 (METTL3) play key roles in cancer progression. However, the roles of m6A and METTL3 in CRC progression require further clarification. Methods Adenoma and CRC samples were examined to detect m6A and METTL3 levels, and tissue microarrays were performed to evaluate the association of m6A and METTL3 levels with the survival of patients with CRC. The biological functions of METTL3 were investigated through cell counting kit-8, wound healing, and transwell assays. M6A epitranscriptomic microarray, methylated RNA immunoprecipitation-qPCR, RNA stability, luciferase reporter, and RNA immunoprecipitation assays were performed to explore the mechanism of METTL3 in CRC progression. Results M6A and METTL3 levels were substantially elevated in CRC tissues, and patients with CRC with a high m6A or METTL3 levels exhibited shorter overall survival. METTL3 knockdown substantially inhibited the proliferation, migration, and invasion of CRC cells. An m6A epitranscriptomic microarray revealed that the cell polarity regulator Crumbs3 (CRB3) was the downstream target of METTL3. METTL3 knockdown substantially reduced the m6A level of CRB3, and inhibited the degradation of CRB3 mRNA to increase CRB3 expression. Luciferase reporter assays also showed that the transcriptional level of wild-type CRB3 significantly increased after METTL3 knockdown but not its level of variation. Knockdown of YT521-B homology domain–containing family protein 2 (YTHDF2) substantially increased CRB3 expression. RNA immunoprecipitation assays also verified the direct interaction between the YTHDF2 and CRB3 mRNA, and this direct interaction was impaired after METTL3 inhibition. In addition, CRB3 knockdown significantly promoted the proliferation, migration, and invasion of CRC cells. Mechanistically, METTL3 knockdown activated the Hippo pathway and reduced nuclear localization of Yes1-associated transcriptional regulator, and the effects were reversed by CRB3 knockdown. Conclusions M6A and METTL3 levels were substantially elevated in CRC tissues relative to normal tissues. Patients with CRC with high m6A or METTL3 levels exhibited shorter overall survival, and METTL3 promoted CRC progression. Mechanistically, METTL3 regulated the progression of CRC by regulating the m6A–CRB3–Hippo pathway.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Roy Matkovic ◽  
Marina Morel ◽  
Sophie Lanciano ◽  
Pauline Larrous ◽  
Benjamin Martin ◽  
...  

AbstractThe Human Silencing Hub (HUSH) complex constituted of TASOR, MPP8 and Periphilin recruits the histone methyl-transferase SETDB1 to spread H3K9me3 repressive marks across genes and transgenes in an integration site-dependent manner. The deposition of these repressive marks leads to heterochromatin formation and inhibits gene expression, but the underlying mechanism is not fully understood. Here, we show that TASOR silencing or HIV-2 Vpx expression, which induces TASOR degradation, increases the accumulation of transcripts derived from the HIV-1 LTR promoter at a post-transcriptional level. Furthermore, using a yeast 2-hybrid screen, we identify new TASOR partners involved in RNA metabolism including the RNA deadenylase CCR4-NOT complex scaffold CNOT1. TASOR and CNOT1 synergistically repress HIV expression from its LTR. Similar to the RNA-induced transcriptional silencing complex found in fission yeast, we show that TASOR interacts with the RNA exosome and RNA Polymerase II, predominantly under its elongating state. Finally, we show that TASOR facilitates the association of RNA degradation proteins with RNA polymerase II and is detected at transcriptional centers. Altogether, we propose that HUSH operates at the transcriptional and post-transcriptional levels to repress HIV proviral expression.


Sign in / Sign up

Export Citation Format

Share Document