nuclear interior
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 10)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 7 (23) ◽  
pp. eabf6251
Author(s):  
Daria Amiad-Pavlov ◽  
Dana Lorber ◽  
Gaurav Bajpai ◽  
Adriana Reuveny ◽  
Francesco Roncato ◽  
...  

The three-dimensional organization of chromatin contributes to transcriptional control, but information about native chromatin distribution is limited. Imaging chromatin in live Drosophila larvae, with preserved nuclear volume, revealed that active and repressed chromatin separates from the nuclear interior and forms a peripheral layer underneath the nuclear lamina. This is in contrast to the current view that chromatin distributes throughout the nucleus. Furthermore, peripheral chromatin organization was observed in distinct Drosophila tissues, as well as in live human effector T lymphocytes and neutrophils. Lamin A/C up-regulation resulted in chromatin collapse toward the nuclear center and correlated with a significant reduction in the levels of active chromatin. Physical modeling suggests that binding of lamina-associated domains combined with chromatin self-attractive interactions recapitulate the experimental chromatin distribution profiles. Together, our findings reveal a novel mode of mesoscale organization of peripheral chromatin sensitive to lamina composition, which is evolutionary conserved.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Nana Naetar ◽  
Konstantina Georgiou ◽  
Christian Knapp ◽  
Irena Bronshtein ◽  
Elisabeth Zier ◽  
...  

Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2α. Here, we show that loss of LAP2α actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2α-independent manner, binding of LAP2α to lamin A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2α is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.


2020 ◽  
Author(s):  
Nana Naetar ◽  
Konstantina Georgiou ◽  
Christian Knapp ◽  
Irena Bronshtein ◽  
Elisabeth Zier ◽  
...  

AbstractLamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). We show that lamin A in the nuclear interior is formed from newly expressed pre-lamin A during processing and from soluble mitotic mature lamins in a LAP2α-independent manner. Binding of LAP2α to lamins A/C in the nuclear interior during interphase inhibits formation of higher order structures of lamin A/C in vitro and in vivo, keeping lamin A/C in a mobile low assembly state independent of lamin A/C S22 phosphorylation. Loss of LAP2α causes formation of larger, less mobile and biochemically stable lamin A/C structures in the nuclear interior, which reduce the mobility of chromatin. We propose that LAP2α is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Kohta Ikegami ◽  
Stefano Secchia ◽  
Omar Almakki ◽  
Alexis V Stutzman ◽  
Sachie Ikegami ◽  
...  

The segregation of heterochromatin domains (LADs) at the nuclear periphery by the nuclear lamina, composed by polymerized nuclear Lamin A/C, provides a longstanding paradigm for the control of gene expression and for the mechanisms underlying Lamin-A/C-associated disorders, including progeria and cardiomyopathy. Here, we provide evidence supporting a novel paradigm that Lamin A/C functions as a transcription factor in the nuclear interior. We discovered that Ser22-phosphorylated Lamin A/C (pS22-Lamin A/C), required for lamin depolymerization during mitosis, populated the nuclear interior throughout the cell cycle. pS22-Lamin A/C ChIP-deq demonstrated localization at a large subset of putative active enhancers, not LADs. pS22-Lamin A/C-binding sites were co-occupied by the transcriptional activator c-Jun. In progeria patient-derived fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost whereas new pS22-Lamin A/C-binding sites emerged. New pS22-Lamin A/C binding was accompanied by increased histone acetylation and increased c-Jun binding, whereas loss of pS22-Lamin A/C-binding was accompanied by loss of histone acetylation and c-Jun binding. New pS22-Lamin A/C enhancer binding in progeria was associated with upregulated expression of genes implicated in progeria pathophysiology, including cardiovascular disease. In contrast, alteration of LADs in progeria-patient cells could not explain the observed gene expression changes. These results suggest that Lamin A/C regulates gene expression by enhancer binding in the nuclear interior, independent of its function at the nuclear lamina, providing a new paradigm for the pathogenesis of lamin-associated disorders. pS22-Lamin A/C was also present in the nuclear interior of adult mouse cardiomyocytes. Cardiomyocyte-specific deletion of Lmna encoding Lamin A/C in adult mice caused extensive transcriptional changes in the heart and dilated cardiomyopathy, without apparent reduction of nuclear peripheral Lamin A/C. Disruption of the gene regulatory rather than LAD tethering function of Lamin A/C may underlie the pathogenesis of disorders caused by LMNA mutations, including cardiomyopathy.


2020 ◽  
Vol 6 (14) ◽  
pp. eaay9095 ◽  
Author(s):  
Jian Sun ◽  
Junwei Chen ◽  
Erfan Mohagheghian ◽  
Ning Wang

Mechanical forces play important roles in development, physiology, and diseases, but how force is transduced into gene transcription remains elusive. Here, we show that transcription of transgene DHFR or endogenous genes egr-1 and Cav1 is rapidly up-regulated in response to cyclic forces applied via integrins at low frequencies but not at 100 Hz. Gene up-regulation does not follow the weak power law with force frequency. Force-induced transcription up-regulation at the nuclear interior is associated with demethylation of histone H3 lysine-9 trimethylation (H3K9me3), whereas no transcription up-regulation near the nuclear periphery is associated with H3K9me3 that inhibits Pol II recruitment to the promoter site. H3K9me3 demethylation induces Pol II recruitment and increases force-induced transcription of egr-1 and Cav1 at the nuclear interior and activates mechano-nonresponsive gene FKBP5 near the nuclear periphery, whereas H3K9me3 hypermethylation has opposite effects. Our findings demonstrate that rapid up-regulation of endogenous mechanoresponsive genes depends on H3K9me3 demethylation.


2020 ◽  
Vol 52 (6) ◽  
pp. 699-713.e11 ◽  
Author(s):  
Kohta Ikegami ◽  
Stefano Secchia ◽  
Omar Almakki ◽  
Jason D. Lieb ◽  
Ivan P. Moskowitz
Keyword(s):  
Lamin A ◽  

2020 ◽  
Vol 117 (6) ◽  
pp. 2770-2778 ◽  
Author(s):  
Christina Zelmer ◽  
Ludovit P. Zweifel ◽  
Larisa E. Kapinos ◽  
Ioana Craciun ◽  
Zekiye P. Güven ◽  
...  

Organelle-specific nanocarriers (NCs) are highly sought after for delivering therapeutic agents into the cell nucleus. This necessitates nucleocytoplasmic transport (NCT) to bypass nuclear pore complexes (NPCs). However, little is known as to how comparably large NCs infiltrate this vital intracellular barrier to enter the nuclear interior. Here, we developed nuclear localization signal (NLS)-conjugated polymersome nanocarriers (NLS-NCs) and studied the NCT mechanism underlying their selective nuclear uptake. Detailed chemical, biophysical, and cellular analyses show that karyopherin receptors are required to authenticate, bind, and escort NLS-NCs through NPCs while Ran guanosine triphosphate (RanGTP) promotes their release from NPCs into the nuclear interior. Ultrastructural analysis by regressive staining transmission electron microscopy further resolves the NLS-NCs on transit in NPCs and inside the nucleus. By elucidating their ability to utilize NCT, these findings demonstrate the efficacy of polymersomes to deliver encapsulated payloads directly into cell nuclei.


2019 ◽  
Author(s):  
Laura Brueckner ◽  
Peiyao A Zhao ◽  
Tom van Schaik ◽  
Christ Leemans ◽  
Jiao Sima ◽  
...  

AbstractTranscriptionally inactive genes are often positioned at the nuclear lamina (NL), as part of large lamina-associated domains (LADs). Activation of such genes is often accompanied by repositioning towards the nuclear interior. How this process works and how it impacts flanking chromosomal regions is poorly understood. We addressed these questions by systematic manipulation of gene activity and detailed analysis of NL interactions. Activation of genes inside LADs typically causes detachment of the entire transcription unit but rarely more than 50-100 kb of flanking DNA, even when multiple neighboring genes are activated. The degree of detachment depends on the expression level and the length of the activated gene. Loss of NL interactions coincides with a switch from late to early replication timing, but the latter can involve longer stretches of DNA. These findings show how NL interactions can be shaped locally by transcription and point to a remarkable flexibility of interphase chromosomes.


2019 ◽  
Author(s):  
Kohta Ikegami ◽  
Stefano Secchia ◽  
Omar Almakki ◽  
Jason D. Lieb ◽  
Ivan P. Moskowitz

ABSTRACTLMNA encodes nuclear lamin A/C that tethers lamina-associated heterochromatin domains (LADs) to the nuclear periphery. Point mutations in LMNA cause degenerative disorders including the premature aging disorder Hutchinson-Gilford progeria, but the mechanisms are unknown. We report that Ser22-phosphorylated Lamin A/C (pS22-Lamin A/C) was localized to the interior of the nucleus in human fibroblasts throughout the cell cycle. pS22-Lamin A/C interacted with a specific subset of putative active enhancers, not LADs, primarily at locations co-bound by the transcriptional activator c-Jun. In progeria-patient fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost whereas new pS22-Lamin A/C-binding sites emerged in normally quiescent loci. These new pS22-Lamin A/C-binding sites displayed increased histone acetylation and c-Jun binding, implying increased enhancer activity. The genes near these new binding sites, implicated in clinical components of progeria including carotid artery diseases, hypertension, and cardiomegaly, were upregulated in progeria. These results suggest that Lamin A/C regulates gene expression by direct enhancer binding in the nuclear interior. Disruption of the gene regulatory rather than LAD function of Lamin A/C presents a novel mechanism for disorders caused by LMNA mutations including progeria.HIGHLIGHTSpS22-Lamin A/C is present in the nuclear interior throughout interphase.pS22-Lamin A/C associates with active enhancers, not lamina-associated domains.pS22-Lamin A/C-genomic binding sites are co-bound by the transcriptional activator c-Jun.New pS22-Lamin A/C binding in progeria accompanies upregulation of disease-related genes.


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 585 ◽  
Author(s):  
Concetta Federico ◽  
Temitayo Owoka ◽  
Denise Ragusa ◽  
Valentina Sturiale ◽  
Domenica Caponnetto ◽  
...  

The radial spatial positioning of individual gene loci within interphase nuclei has been associated with up- and downregulation of their expression. In cancer, the genome organization may become disturbed due to chromosomal abnormalities, such as translocations or deletions, resulting in the repositioning of genes and alteration of gene expression with oncogenic consequences. In this study, we analyzed the nuclear repositioning of HLXB9 (also called MNX1), mapping at 7q36.3, in patients with hematological disorders carrying interstitial deletions of 7q of various extents, with a distal breakpoint in 7q36. We observed that HLXB9 remains at the nuclear periphery, or is repositioned towards the nuclear interior, depending upon the compositional properties of the chromosomal regions involved in the rearrangement. For instance, a proximal breakpoint leading the guanine-cytosine (GC)-poor band 7q21 near 7q36 would bring HLXB9 to the nuclear periphery, whereas breakpoints that join the GC-rich band 7q22 to 7q36 would bring HLXB9 to the nuclear interior. This nuclear repositioning is associated with transcriptional changes, with HLXB9 in the nuclear interior becoming upregulated. Here we report an in cis rearrangement, involving one single chromosome altering gene behavior. Furthermore, we propose a mechanistic model for chromatin reorganization that affects gene expression via the influences of new chromatin neighborhoods.


Sign in / Sign up

Export Citation Format

Share Document