A natural convection model of molten pool penetration into a melting miscible substrate

1994 ◽  
Vol 152 (1-3) ◽  
pp. 319-330 ◽  
Author(s):  
Michael Epstein
2003 ◽  
Vol 125 (6) ◽  
pp. 1027-1037 ◽  
Author(s):  
Marc Hodes ◽  
Kenneth A. Smith ◽  
Peter Griffith

A model is developed for the rate of salt deposition by natural convection from aqueous salt solutions onto a horizontal cylinder heated beyond the solubility temperature for the dissolved salt. The model accounts for the deposition rate at the salt layer-solution interface (SLSI) formed on the cylinder, but it does not account for deposition which may occur inside the porous salt layer (PSL). Dissolved salt is transported to the SLSI by molecular diffusion (with advection) and subsequently nucleates heterogeneously there. The model is applied to the experimental deposition rate data acquired by Hodes et al. (1998, 2002) at conditions pertinent to Supercritical Water Oxidation (SWCO). The ratio of the predicted deposition rate to the measured one ranges from roughly 0.5 to 2 indicating that deposition inside the PSL can be considerable.


2019 ◽  
Vol 126 ◽  
pp. 443-451
Author(s):  
Qiao-lin Zuo ◽  
Li-bing Zhu ◽  
Jia-zheng Liu

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Chen-Zhao Fu ◽  
Wen-Rong Si ◽  
Lei Quan ◽  
Jian Yang

Pipe cable is considered as an important form for underground transmission line. The maximum electrical current (ampacity) of power cable system mostly depends on the cable conductor temperature. Therefore, accurate calculation of temperature distribution in the power cable system is quite important to extract the cable ampacity. In the present paper, the fluid flow and heat transfer characteristics in the pipe cable with alternating current were numerically studied by using commercial code COMSOL MULTIPHYSICS based on finite element method (FEM). The cable core loss and eddy current loss in the cable were coupled for the heat transfer simulation, and the difference of heat transfer performances with pure natural convection model and radiation-convection model was compared and analysed in detail. Meanwhile, for the radiation-convection model, the effects caused by radiant emissivity of cable surface and pipe inner surface, as well as the cable location in the pipe, were also discussed. Firstly, it is revealed that the radiation and natural convection heat flux on the cable surface would be of the same order of magnitude, and the radiation heat transfer on the cable surface should not be ignored. Otherwise, the cable ampacity would be underestimated. Secondly, it is found that the overall heat transfer rate on the cable surface increases as the cable surface emissivity increases, and this is more remarkable to the upper cable. While the effect caused by the radiant emissivity on the pipe inner surface would be relatively small. Furthermore, it is demonstrated that, as cable location in the pipe falls, the natural convection heat transfer would be enhanced. These results would be meaningful for the ampacity prediction and optimum design for the pipe cable.


1999 ◽  
Vol 72 (1-3) ◽  
pp. 17-30 ◽  
Author(s):  
William I Moore ◽  
Eric S Donovan ◽  
Christopher R Powers

Sign in / Sign up

Export Citation Format

Share Document