salt layer
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 37)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jitong Liu ◽  
Wanjun Li ◽  
Haiqiu Zhou ◽  
Yixin Gu ◽  
Fuhua Jiang ◽  
...  

Abstract The reservoir underneath the salt bed usually has high formation pressure and large production rate. However, downhole complexities such as wellbore shrinkage, stuck pipe, casing deformation and brine crystallization prone to occur in the drilling and completion of the salt bed. The drilling safety is affected and may lead to the failure of drilling to the target reservoir. The drilling fluid density is the key factor to maintain the salt bed’s wellbore stability. The in-situ stress of the composite salt bed (gypsum-salt -gypsum-salt-gypsum) is usually uneven distributed. Creep deformation and wellbore shrinkage affect each other within layers. The wellbore stability is difficult to maintain. Limited theorical reference existed for drilling fluid density selection to mitigate the borehole shrinkage in the composite gypsum-salt layers. This paper established a composite gypsum-salt model based on the rock mechanism and experiments, and a safe-drilling density selection layout is formed to solve the borehole shrinkage problem. This study provides fundamental basis for drilling fluid density selection for gypsum-salt layers. The experiment results show that, with the same drilling fluid density, the borehole shrinkage rate of the minimum horizontal in-situ stress azimuth is higher than that of the maximum horizontal in-situ stress azimuth. However, the borehole shrinkage rate of the gypsum layer is higher than salt layer. The hydration expansion of the gypsum is the dominant reason for the shrinkage of the composite salt-gypsum layer. In order to mitigate the borehole diameter reduction, the drilling fluid density is determined that can lower the creep rate less than 0.001, as a result, the borehole shrinkage of salt-gypsum layer is slowed. At the same time, it is necessary to improve the salinity, filter loss and plugging ability of the drilling fluid to inhibit the creep of the soft shale formation. The research results provide technical support for the safe drilling of composite salt-gypsum layers. This achievement has been applied to 135 wells in the Amu Darya, which completely solved the of wellbore shrinkage problem caused by salt rock creep. Complexities such as stuck string and well abandonment due to high-pressure brine crystallization are eliminated. The drilling cycle is shortened by 21% and the drilling costs is reduced by 15%.


2021 ◽  
Author(s):  
Hua Yan ◽  
Weibo Li ◽  
Rui Xiang ◽  
Guangfeng Dong ◽  
Zhen Wang ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Changsheng Li ◽  
Hongwei Yin ◽  
Zhenyun Wu ◽  
Peng Zhou ◽  
Wei Wang ◽  
...  

The salt layer is critical for the structural deformation in the salt-bearing fold-and-thrust system, which not only acts as the efficient décollement layer but also flows to form salt tectonics. Kuqa Depression has a well-preserved thin-skinned fold-and-thrust system with the salt layer as the décollement. To investigate the effects of salt thickness on the structural deformation in the Kuqa Depression, three discrete element models with different salt thicknesses were constructed. The experiment without salt was controlled by several basal décollement dominant faults, forming several imbricate sheets. The experiments with salt developed the decoupled deformation with the salt layer as the upper décollement (subsalt, intrasalt, and suprasalt), significantly similar to the Kuqa Depression along the northern margin of Tarim Basin. Basal décollement dominant imbricated thrusts formed at the subsalt units, while the monoclinal structure formed at the suprasalt units. The decoupled deformation was also observed in the tectonic deformation graphics, distortional strain fields, and max shear stress fields. However, the salt layer was thickened in the thick salt model, and the salt thickness of the thin salt model varied slightly because the thin salt weakened the flowability of the salt. The lower max shear stress zone was easily formed in the distribution region of salt under the action of compression stress, which is conducive to the flow convergence of salt and the crumpled deformation of interlayer in salt. The results are well consistent with the natural characteristics of structural deformation in the Kuqa Depression. Our modeling result concerns the structural characteristics and evolution of salt-related structures and the effects of salt thickness on the structural deformation in the compressional stress field, which might be helpful for the investigations of salt-related structures in other salt-bearing fold-and-thrust belts.


Author(s):  
Simon Braunger ◽  
Manuel Scharrer ◽  
Michael A.W. Marks ◽  
Thomas Wenzel ◽  
Gregor Markl

ABSTRACT Dikes of primitive olivine melilitites and monchiquites intruded into an Oligocene (Rupelian) potash salt deposit near Buggingen (SW Germany). Ocelli and amygdules reveal distinct mineral assemblages depending on whether the dike rocks are in direct contact with the potash layer or with bituminous shales (Fish Shale). Samples in contact with the potash salt layer show roundish textures that contain smectite ± talc ± chlorite, calcite, and in cases anhydrite and halite, while those close to the bituminous shale mainly comprise smectite, calcite, zeolite group minerals, and analcime. No textural or mineralogical evidence for high-temperature (magmatic) interaction between the dike rocks and the evaporites was observed. This is presumably related to (1) a very low magmatic water activity in the magma, which prevented exsolution of aqueous fluids and appreciable dissolution of the salt, and (2) fast cooling of the magmas, inhibiting melting of the salt deposits and potential liquid mingling and/or assimilation processes. Halite formation in the dike rocks is, rather, related to later, post-magmatic hydrothermal fluids that previously interacted with the salt-rich host rocks. Alteration of the initially glassy groundmass to smectites and zeolites caused an enrichment of Na in the residual fluid, but halite saturation was not attained, as indicated by the absence of groundmass halite. Only fluid–rock interaction in millimeter-sized vugs caused halite precipitation via desiccation by swelling of previously formed clay minerals. Locally, the boron silicate datolite formed in pseudomorphs after olivine. Its precipitation was controlled by the Si and B supply provided by the breakdown of serpentine and smectite.


Author(s):  
M. Ducoux ◽  
E. Masini ◽  
J. Tugend ◽  
J. Gómez-Romeu ◽  
S. Calassou

Half grabens and supra-detachment basins correspond to end-member basin types of magma-poor rift settings, each of them showing a characteristic stratigraphic architecture. The occurrence of a basement-cover décollement has been shown to drastically change the stratigraphic architecture of half graben basins, however, the effect of such basement-cover décollement remains to be documented in supra-detachment basins formed during hyper-extension. We investigate the tectono-stratigraphic record of the Arzacq Basin (SW France) recording the formation of a salt-rich Cretaceous hyperextended rift system. Combining 2-D and 3-D seismic reflection calibrated from well data, we show that this basin is an asymmetric syn-rift extensional syncline growing above a pre-kinematic salt layer. By mapping the sub-salt basement, we show that the formation of this syncline is controlled by the South-Arzacq Fault (SAF), soling in the sub-salt basement. Based on crosscutting relationships and the observed southward migration of syn-rift depocenters, this N110°-striking, 20°-dipping structure accommodates >10 km of thick-skinned extension. The overlying supra-salt cover coherently glided, following the basement geometry. The 3-D segmentation of the SAF and the sub-salt stratigraphic architecture of the Arzacq Basin suggest a roughly dip-slip kinematic. A post-kinematic kilometer-scale uplift is documented on the southern side of the Arzacq Basin. It may result from the increasing lithospheric thinning and thermal support at the end of asymmetric hyperextension. As salt commonly occurs in extensional settings, we believe that our description of the tectono-stratigraphic record of a basement-decoupled supra-detachment basin has global applicability to unleash the tectono-stratigraphic evolution of worldwide hyper-extended rifted margins.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jun Li ◽  
Xiying Zhang ◽  
Mingyue Hu ◽  
Wenxia Li ◽  
Weiliang Miao ◽  
...  

The fluid inclusion composition of halite can help track chemical composition of ancient fluids and, thus, serves as a reliable index to analyze ancient brine in salt lakes. Qarhan Salt Lake (QSL) is the largest potash brine deposit in China. Although the mixing of modern river water and Ca-Cl deep water is widely accepted as potassium formation, the mixing characteristics in the time domain and driving factors of deep water are still unclear. Here, the chemical composition of fluid inclusions in primary halite samples collected from the ISL1A borehole in QSL was measured by LA-ICP-MS technology. The analysis results show that, during the formation stage of the S4 salt layer in QSL, the main potassium salt layer, the contents of Ca2+ and Sr2+ in brine increased significantly. There is evidence confirming that Ca-Cl deep water is beneficial to the enrichment of potassium and the surrounding rivers generally develop terraces. It suggests that, during the formation stage of the QSL potassium salt layer, more Ca-Cl inflow water of the northern margin supplies the salt lake, inferring that it was driven by tectonic activities. In addition, the chemical composition of halite fluid inclusions shows that there is an anomaly in geochemistry at the early stage of salt formation in QSL. By combining the time of tectonic activities, it is inferred that the anomaly is not caused by tectonic activities but maybe caused by a salt-forming event. This work indicates that deep water and tectonic movement have a huge impact on the evolution of salt lakes. Therefore, it is necessary to consider the influence of deep water and tectonic activities on the salt-forming evolution stage of salt lakes when studying the salt-forming evolution stage of salt lakes and paleoclimate by using salt lake deposition.


2021 ◽  
Author(s):  
Gaia Travan ◽  
Virginie Gaullier ◽  
Bruno Vendeville ◽  
Jacques Déverchère ◽  
Fadl Raad ◽  
...  

<p>The Algerian margin, located in the Western Mediterranean basin, is reactivated in compression since 8 My due to the convergence between Africa and Eurasia, and is nowadays subjected to a N45W compression of several mm/y (Jolivet et al., 1995; Noquet et Calais, 2004). While the reactivation is attested by GPS measurements and destructive seismic events, such as the earthquake of Boumerdes in 2003 (M 6.8), the visualization in the seismic data of the deep structures is made difficult by the presence of a thick Messinian salt layer. The seismic reflection profiles acquired on the Algerian margin during the “Maradja I” oceanographic survey (2003) highlighted the presence of north-verging thrusts offshore Algiers (Déverchère et al., 2005; Domzig et al., 2006), as well as the peculiar geometry of the Messinian salt layer (Lofi et al., 2011, Obone Zue Obame, 2011).</p><p>Between 2 and 4° East, the margin presents particularly complex salt structures, partly associated to the uplift of the plateau as a consequence of the crustal convergence (Déverchère et al., 2005; Domzig et al., 2006). One of the consequences of the uplift of the plateau is the dipping of the base salt horizon towards W to NNW. Moreover, from the analysis of the seismic reflection profiles, the presence of early (syn-UU) salt movement in the profiles parallel to the margin is clear, while the profiles perpendicular to the margin show compressional features mostly active during the Pliocene to Quaternary period.</p><p>From the observation of the natural example, and from the comparison with different analogue models, we conclude that offshore Algiers we find the major salt structures and minibasins formed through salt spreading, while the area offshore Boumerdès is characterized by gravity gliding due to the uplifted plateau. Although from this point of view the N-S compressional tectonics favors gravity gliding through the plateau uplift, on the other hand it influences the salt structure development direction, which present a mainly E-W development and a minor and delayed N-S one. A partial influence of the sedimentary body from Algerian rivers on the position of the major salt structures is inferred.</p>


2021 ◽  
Author(s):  
Mark Rowan ◽  
Katherine Giles

<p>Passive diapirism entails ongoing, near-surface syndepositional growth of a salt stock or wall. As such, the diapirs and intervening minibasins influence the development and geometries of associated sedimentary strata. In this short overview, we distinguish between two scales and aspects of salt-sediment interaction that reflect a depositional continuum from the topographic highs of diapir roofs to the lows of depocenters. At the larger, multi-km scale, minibasin tectonostratigraphic successions form bowls, troughs, wedges, or layers that respond to differential evacuation of the deep salt layer. These successions have internal concordant, onlapping, or truncated geometries, and they stack into different patterns based on the evolution of active salt tectonic processes. At the smaller scale, passive diapirs create local sea-floor scarps due to drape folding of the diapir roof over the edge of the rising diapir. Depending primarily on the thickness of the roof, this results in tabular or tapered composite halokinetic sequences within 1 km or less of the diapir edge. It is important to keep these geometries and processes separate as they have distinct implications for sediment transport and deposition as well as the definition and detailed geometries of hydrocarbon traps in three-way truncations against diapirs and welds.</p>


2021 ◽  
Vol 80 (4) ◽  
Author(s):  
Michael Ezersky ◽  
Lev Eppelbaum ◽  
Anatoly Legchenko ◽  
A. Al-Zoubi ◽  
A-R. A. Abueladas
Keyword(s):  

Solid Earth ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15-34
Author(s):  
Séverine Liora Furst ◽  
Samuel Doucet ◽  
Philippe Vernant ◽  
Cédric Champollion ◽  
Jean-Louis Carme

Abstract. The salt mining industrial exploitation located in Vauvert (France) has been injecting water at high pressure into wells to dissolve salt layers at depth. The extracted brine has been used in the chemical industry for more than 30 years, inducing a subsidence of the surface. Yearly leveling surveys have monitored the deformation since 1996. This dataset is supplemented by synthetic aperture radar (SAR) images, and since 2015, global navigation satellite system (GNSS) data have also continuously measured the deformation. New wells are regularly drilled to carry on with the exploitation of the salt layer, maintaining the subsidence. We make use of this careful monitoring by inverting the geodetic data to constrain a model of deformation. As InSAR and leveling are characterized by different strengths (spatial and temporal coverage for InSAR, accuracy for leveling) and weaknesses (various biases for InSAR, notably atmospheric, very limited spatial and temporal coverage for leveling), we choose to combine SAR images with leveling data, to produce a 3-D velocity field of the deformation. To do so, we develop a two-step methodology which consists first of estimating the 3-D velocity from images in ascending and descending acquisition of Sentinel 1 between 2015 and 2017 and second of applying a weighted regression kriging to improve the vertical component of the velocity in the areas where leveling data are available. GNSS data are used to control the resulting velocity field. We design four analytical models of increasing complexity. We invert the combined geodetic dataset to estimate the parameters of each model. The optimal model is made of 21 planes of dislocation with fixed position and geometry. The results of the inversion highlight two behaviors of the salt layer: a major collapse of the salt layer beneath the extracting wells and a salt flow from the deepest and most external zones towards the center of the exploitation.


Sign in / Sign up

Export Citation Format

Share Document