mine ventilation
Recently Published Documents


TOTAL DOCUMENTS

461
(FIVE YEARS 109)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Kuan Wu ◽  
Shiliang Shi ◽  
Yong Chen

The Fluent computational fluid dynamics software was used to study the relevant factors affecting the maximum commutation half cycle for thermal countercurrent oxidation of low-concentration gas in coal mine ventilation. Based on orthogonal experiments, the maximum commutation half cycle for thermal countercurrent oxidation of the exhaust gas in the coal mine ventilation under 25 working conditions with the combination of different methane concentrations, inlet speeds, porosities, and oxidation bed filling lengths is investigated. SPSS data processing software was used to perform regression analysis on the numerical simulation data, and a mathematical model for predicting the maximum commutation half cycle under the influence of four factors was obtained. Through experiments, the mathematical model of the maximum commutation half cycle by the numerical simulation was verified. After introducing the wall heat loss correction coefficient, the complete prediction model of the maximum commutation half cycle was obtained. Comparing the experimental test value with the calculated value using the corrected model, the relative error was not more than 3%. The complete mathematical model corrected can be applied to the design calculation of the maximum commutation half cycle for thermal countercurrent oxidation of low-concentration gas in actual coal mine ventilation.


2021 ◽  
Vol 250 ◽  
pp. 553-561
Author(s):  
Nina Kaledina ◽  
Valentina Malashkina

The gas emission control in the mines is operated by ventilation and degassing systems that ensure the aerological safety of the mines or minimize the aerological risks. The ventilation system of the mine and its individual sites includes a significant number of technical devices and equipment, and the air tubes are mainly mining workings, the condition of which determines the quality of the ventilation network (its capacity) and depends on a number of mining factors. Similarly, one of the most important elements of the degassing system, which includes its own chain of technological equipment, are wells, and in some cases, mining workings. Thus, mine ventilation and degassing systems cannot be attributed to purely technical systems, since they include mining elements characterized by high variability of the determining parameters. To assess their reliability, it is necessary to use various combined methods that include additional characteristics in relation to the mining component. At the same time, the reliability of technical devices that ensure the functioning of mine ventilation and degassing systems largely determines the efficiency (stability and reliability) of these systems and, consequently, affects the level of aerological risks. The described approach to assessing the reliability of ventilation and degassing systems of coal mines when analyzing aerological risks is based on the developed system of risk indicators for the methane factor and will allow determining the risk dynamics in automatic mode based on monitoring the parameters of the ventilation and degassing system state.


Sign in / Sign up

Export Citation Format

Share Document