Lipid peroxidation induced by some halomethanes as measured by in vivo pentane production in the rat

1979 ◽  
Vol 49 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Masaru Sagai ◽  
Al L. Tappel
Lipids ◽  
1978 ◽  
Vol 13 (4) ◽  
pp. 305-307 ◽  
Author(s):  
Richard E. Litov ◽  
Dennis H. Irving ◽  
Jeanne E. Downey ◽  
Al L. Tappel

Lipids ◽  
1978 ◽  
Vol 13 (6) ◽  
pp. 403-407 ◽  
Author(s):  
Jeanne E. Downey ◽  
Dennis H. Irving ◽  
Al L. Tappel

1989 ◽  
Vol 6 (3) ◽  
pp. 167-174 ◽  
Author(s):  
Herbert FUHRMANN ◽  
Hans-Peter SALLMANN ◽  
Sandor MOLNAR

2001 ◽  
Vol 120 (5) ◽  
pp. A670-A670
Author(s):  
M NERI ◽  
G DAVI ◽  
D FESTI ◽  
F LATERZA ◽  
A FALCO ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Author(s):  
Hassan Ahmadvand ◽  
Majid Tavafi ◽  
Ali Khosrowbeygi ◽  
Gholamreza Shahsavari ◽  
Maryam Hormozi ◽  
...  

1986 ◽  
Vol 251 (5) ◽  
pp. F839-F843 ◽  
Author(s):  
M. S. Paller ◽  
R. P. Hebbel

After renal ischemia, oxygen free radicals are formed and produce tissue injury, in large part, through peroxidation of polyunsaturated fatty acids. We used an in vivo method to monitor lipid peroxidation after renal ischemia, the measurement of ethane in expired gas, to determine the time course of lipid peroxidation and the effect of several agents to limit lipid peroxidation after renal ischemia. In anesthetized rats there was no significant increase in ethane production during 60 min of renal ischemia. During the first 10 min of renal reperfusion, there was a prompt increase in ethane production from 2.9 +/- 1.3 to 6.3 +/- 1.9 pmol/min (P less than 0.05). Ethane production was significantly increased during the first 50 min of reperfusion and then rapidly tapered to base-line levels. Preischemic administration of allopurinol to prevent superoxide radical generation or the superoxide radical scavenger superoxide dismutase prevented the increase in ethane production during postischemic reperfusion. These studies confirm that there is increase lipid peroxidation following renal ischemia that can be prevented by agents which limit the formation or accumulation of oxygen free radicals. This in vivo method for measuring lipid peroxidation could also be employed to study the effects of ischemia on lipid peroxidation in other organs, as well as to monitor lipid peroxidation in other forms of injury.


Sign in / Sign up

Export Citation Format

Share Document