Accurate estimates for the amplitude and support of unbounded solutions of the non-linear heat-conduction equation with a source

1990 ◽  
Vol 30 (2) ◽  
pp. 67-74
Author(s):  
V.A. Galaktionov
2017 ◽  
Vol 38 (2) ◽  
pp. 81-100 ◽  
Author(s):  
Magda Joachimiak ◽  
Michał Ciałkowski

AbstractDirect and inverse problems for unsteady heat conduction equation for a cylinder were solved in this paper. Changes of heat conduction coefficient and specific heat depending on the temperature were taken into consideration. To solve the non-linear problem, the Kirchhoff’s substitution was applied. Solution was written as a linear combination of Chebyshev polynomials. Sensitivity of the solution to the inverse problem with respect to the error in temperature measurement and thermocouple installation error was analysed. Temperature distribution on the boundary of the cylinder, being the numerical example presented in the paper, is similar to that obtained during heating in the nitrification process.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 309-314
Author(s):  
Sheng Zhang ◽  
Xiaowei Zheng

Fractional calculus has many advantages. Under consideration of this paper is a (2+1)-dimensional non-linear local fractional heat conduction equation with arbitrary degree non-linearity. Backlund transformation of a reduced form of the local fractional heat conduction equation is constructed by Painleve analysis. Based on the Backlund transformation, some exact non-differentiable solutions of the local fractional heat conduction equation are obtained. To gain more insights of the obtained solutions, two solutions are constrained to a Cantor set and then two spatio-temporal fractal structures with profiles of these two solutions are shown. This paper further reveals by local fractional heat conduction equation that fractional calculus plays important role in dealing with non-differentiable problems.


Sign in / Sign up

Export Citation Format

Share Document