System identification in large scale systems with hierarchical structures

1973 ◽  
Vol 1 (1) ◽  
pp. 23-42 ◽  
Author(s):  
N.J. Guinzy ◽  
A.P. Sage
Author(s):  
Masataka Yoshimura ◽  
Kazuhiro Izui

Abstract A large-scale machine system often has a general hierarchical structure. For hierarchical structures, optimization is difficult because many local optima almost always arise, however genetic algorithms that have a hierarchical genotype can be applied to treat such problems directly. Relations between the structural components are analyzed and this information is used to partition the hierarchical structure. Partitioning large-scale problems into sub-problems that can be solved using parallel processed GAs increases the efficiency of the optimization search. The optimization of large-scale systems then becomes possible due to information sharing of Pareto optimum solutions for the sub-problems.


2004 ◽  
Vol 126 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Masataka Yoshimura ◽  
Kazuhiro Izui

A large-scale machine system often has a general hierarchical structure. For hierarchical structures, optimization is difficult because many local optima almost always arise, however genetic algorithms that have a hierarchical genotype can be applied to treat such problems directly. Relations between the structural components are analyzed and this information is used to partition the hierarchical structure. Partitioning large-scale problems into sub-problems that can be solved using parallel processed GAs increases the efficiency of the optimization search. The optimization of large-scale systems then becomes possible due to information sharing of Pareto optimum solutions for the sub-problems.


1997 ◽  
Author(s):  
◽  
Boris R. Jankovic

In this study we propose a new concept and methodology of hierarchical identification. The need for such a methodology comes from the fact that identification of large-scale systems (LSSs) by one-shot approach may be numerically very complex. The analysis of LSSs is, in general, not approached by the one-shot methodologies normally associated with non-LSSs. The proposed method of hierarchical identification can be therefore viewed as an extension of LSS methodologies to system identification. LSS methodology aims at breaking up the initial, complex problem into a set of smaller size subproblems.


Sign in / Sign up

Export Citation Format

Share Document