A finite element technique for determining mode I stress intensity factors: Application to no-slip bimaterial crack problems

1986 ◽  
Vol 23 (6) ◽  
pp. 715-724 ◽  
Author(s):  
J.P. Clech ◽  
J.L. Lewis ◽  
L.M. Keer
1986 ◽  
Vol 108 (3) ◽  
pp. 282-287 ◽  
Author(s):  
A. Hurlbut ◽  
F. T. C. Loo

A finite element technique using the eight-node quadrilateral isoparametric element is presented to calculate stress intensity factors in orthotropic plates. The procedure is general so as to include multilayered laminates with varying laminae directions and thicknesses. This method can easily solve problems with various loading conditions and plate geometry. Several examples with solutions available in literature are solved to examine the accuracy of the current approach. Solutions of more complicated and practical engineering fracture problems are also presented to demonstrate the versatility of this method.


2008 ◽  
Vol 33-37 ◽  
pp. 103-108
Author(s):  
Hironobu Nisitani ◽  
Kuniharu Ushijima ◽  
D.H. Chen ◽  
Akihide Saimoto

Finite element method (FEM) is used widely for various structural problems. However, in general, it is difficult to guarantee the accuracy of results obtained by commercial software of FEM. In this paper, a practical finite element technique for calculating the stress intensity factors with high accuracy is proposed. This technique is based on the characteristics of stress field due to a crack. In this study, the proposed method is applied to 2-dimentional crack problems.


2002 ◽  
Vol 24 (4) ◽  
pp. 249-256
Author(s):  
Nguyen Dang Hung ◽  
Tran Thanh Ngoc

A conformable and convergent finite element technique is presented for calculation of stress intensity factors for cracked plate membrane problem, which is based on the formulation of the hybrid displacement finite element method, named "Metis elements". In order to achieve a high convergence, this element is combined with an isoparametric element of Barsoum, in which,  the mid-side nodes are moved to quarter-point position. Many examples are numerically tested for evaluation this model, show that the element HSM has a good performance for calculation of stress intensity factors.


Author(s):  
George T. Sha

The use of the stiffness derivative technique coupled with “quarter-point” singular crack-tip elements permits very efficient finite element determination of both stress intensity factors and nodal weight functions. Two-dimensional results are presented in this paper to demonstrate that accurate stress intensity factors and nodal weight functions can be obtained from relatively coarse mesh models by coupling the stiffness derivative technique with singular elements. The principle of linear superposition implies that the calculation of stress intensity factors and nodal weight functions with crack-face loading, σ(rs), is equivalent to loading the cracked body with remote loads, which produces σ(rs) on the prospective crack face in the absence of crack. The verification of this equivalency is made numerically, using the virtual crack extension technique. Load independent nodal weight functions for two-dimensional crack geometry is demonstrated on various remote and crack-face loading conditions. The efficient calculation of stress intensity factors with the use of the “uncracked” stress field and the crack-face nodal weight functions is also illustrated. In order to facilitate the utilization of the discretized crack-face nodal weight functions, an approach was developed for two-dimensional crack problems. Approximations of the crack-face nodal weight functions as a function of distance, (rs), from crack-tip has been successfully demonstrated by the following equation: h a , r s = A a √ r s + B a + C a √ r s + D a r s Coefficients A(a), B(a), C(a) and D(a), which are functions of crack length (a), can be obtained by least-squares fitting procedures. The crack-face nodal weight functions for a new crack geometry can be approximated using cubic spline interpolation of the coefficients A, B, C and D of varying crack lengths. This approach, demonstrated on the calculation of stress intensity factors for single edge crack geometry, resulted in a total loss of accuracy of less than 1%.


2012 ◽  
Vol 195-196 ◽  
pp. 787-790
Author(s):  
Bo He ◽  
Hong Cai Zhang

In this paper, the fracture problem of functionally graded material (FGM) was studied, and the shear modulus was assumed to be an exponential function. The influences of inhomogeneous parameter, crack size and crack angle on the stress intensity factors have been analyzed by the finite element method. The results indicated that the stress intensity factors of mode I decreased with the increasing of the crack angle, the stress intensity factors of mode II increased with the increasing of the crack angle, and the crack stress intensity factor of mode I and mode II decreased with the increasing of the inhomogeneous parameters at crack tips, which was of certain directive significance for the FGM design and manufacture in the actual engineering.


Sign in / Sign up

Export Citation Format

Share Document