Non-conforming modes stabilization of a nine-node stress-resultant degenerated shell element with drilling freedom

1991 ◽  
Vol 40 (3) ◽  
pp. 569-580 ◽  
Author(s):  
H. Kebari ◽  
A.C. Cassell
2015 ◽  
Vol 12 (02) ◽  
pp. 1550004 ◽  
Author(s):  
N. V. Swamy Naidu ◽  
B. Sateesh

The development of a new four node 24 degree of freedom bilinear degenerated shell element is presented for the analysis of shell structures. The present finite element formulation considers the assumed covariant transverse shear strains to avoid the shear locking problem and the assumed covariant membrane strains, which are separated from covariant in-plane strains, to overcome the membrane locking problem. The formulation also includes the deviation of the normal torsional rotation of the mid surface in the governing equation. This element is free from serious shear and membrane locking problems and undesirable spurious kinematic deformation modes. The element is tested for rigid body modes and distorted edges to meet the patch test requirements. The versatility and accuracy of this new degenerated shell element is demonstrated by solving several numerical examples for thick and thin plates.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


1992 ◽  
Vol 9 (6) ◽  
pp. 635-648 ◽  
Author(s):  
L. JENDELE ◽  
A.H.C. CHAN ◽  
D.V. PHILLIPS

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1877-1883 ◽  
Author(s):  
Y. D. Kwon ◽  
N. S. Goo ◽  
B. S. Lim

In this paper, the modified Gauss integration method is developed to eliminate the shear and membrane locking phenomena of the degenerated shell element. The behavior of the element based on the Mindlin/Reissner theory in plates and shells sometimes causes a problem. In displacement-based shell elements, the full integration of stiffness matrices leads to a 'locking' or over-stiff behavior. The selective or reduced integration procedures may often overcome these difficulties, while overstiff solutions may still occur in the analysis with a highly constrained boundary. Except for the six zero-energy modes associated with shell rigid body movements, during the reduced integration of the stiffness matrices, many extra zero spurious energy modes are introduced due to reduced integration. This is a serious defect of degenerated shell element. In previous studies, several methods such as the addition of nonconforming displacement modes, an assumed strain method, and hybrid and mixed elements have been introduced in an attempt to overcome these difficulties. In this study a newly modified Gauss integration method combining both a selective and a weight-modified integration is suggested. Numerical experiments show that the new selective integration and weight-modified integration rule is very effective in eliminating the shear and membrane locking in static and modal analyses, and removes spurious zero-energy modes as well. Also, the effectiveness of proposed shell element is tested by applying it to some example problems. We solved post-buckling problem by the Riks arc-length method and dynamic problem by the Newmark's time integration method, as well as static problems.


1987 ◽  
Author(s):  
ΔΗΜΗΤΡΙΟΣ ΜΠΡΙΑΣΣΟΥΛΗΣ

Sign in / Sign up

Export Citation Format

Share Document