Axisymmetry of a symmetric angle-ply laminate under uniform extension

1994 ◽  
Vol 51 (5) ◽  
pp. 489-494 ◽  
Author(s):  
C.F. Liu ◽  
H.S. Jou
Keyword(s):  
1972 ◽  
Vol 097 (4) ◽  
pp. 379-385
Author(s):  
Václav E. Zizler

2019 ◽  
Vol 14 (4) ◽  
pp. 268-273
Author(s):  
T.F. Mukminov

The equations of continuum mechanics are invariant in relation to the Galilean group generalized by extention. Its 11-dimensional Lie algebra has many subalgebras, which form the optimal system of dissimilar subalgebras. Subalgebras from the optimal system form the graph of embedded subalgebras. There are many chains of subalgebras in the graph. We consider the chain of embedded subalgebras containing operators of space and time translation, the rotation and uniform extension of all independent variables for the models of the continuous medium mechanics. We choose concordant invariants for each subalgebra from the chain. The chain of invariant submodels is constructed in a cylindrical coordinates based on chosen invariants. It is proved that solutions of a submodel constructed on a subalgebra of higher dimension will be part of solutions of submodels constructed on subalgebra of smaller dimensions for the considered chain. Thus, the chain of embedded invariant submodels is constructed by the example of equations of ideal gas dynamics.


2012 ◽  
Vol 223 (7) ◽  
pp. 1371-1383 ◽  
Author(s):  
A. N. Alizada ◽  
A. H. Sofiyev ◽  
N. Kuruoglu

1982 ◽  
Vol 49 (3) ◽  
pp. 561-569 ◽  
Author(s):  
R. I. Zwiers ◽  
T. C. T. Ting ◽  
R. L. Spilker

The stress singularities at the free edge of an interface between adjacent layers in a laminated composite are studied. Each layer of the composite is assumed to be of the same orthotropic material with one of the principal axes being the fiber direction. The angle θ, however, which is the fiber orientation, varies from layer to layer. The composite is subjected to uniform extension in the plane of the layers. At the interface between adjacent layers having fiber angles (0/90), (θ/θ′), and a family of special combinations of (θ/θ′) shown in the paper, the singularity of the type k*rδ (δ<0), seems to be the only possibility. For an interface with other combinations of fiber orientations in the the adjacent layers, it is shown that an additional singularity of the form k(ln r) exists. Since the constant k* depends on the stacking sequence of the layers and the complete boundary conditions, and may vanish in some cases, the existence of a k*rδ singularity at a free edge is not certain until a complete problem is solved. In contrast, the constant k, which is called the logarithmic stress-intensity factor, is independent of the stacking sequence of the layers and the complete boundary conditions. Its value is determined once the fiber orientations on both sides of the interface are known. Therefore, at the interface between adjacent layers for which k≠0, the free-edge stress is inherently singular. Moreover, the singularity is logarithmic.


2014 ◽  
Vol 30 (5) ◽  
pp. 477-489 ◽  
Author(s):  
W.-Y. Liang ◽  
W.-D. Tseng ◽  
J.-Q. Tarn

AbstractExact analysis of displacements and stresses in 2-D orthotopic laminates under extension is conducted. On the basis of the Hamiltonian state space approach and the transfer matrix method, a complete solution, in the context of generalized strain, which exactly satisfies the state space equation, the traction-free BC on the top and bottom surfaces of the rectangular section, the interfacial continuity conditions in multi-layered laminates, and the end conditions on free edges, is obtained by combing the eigensolutions and the particular solution. Evaluating of the stresses in the boundary layer for verification shows that the stress decay in laminates under uniform extension may be slow and the edge effects may be pronounced.


The forces necessary to produce certain simple types of deformation in a tube of incompressible, highly elastic material, isotropic in its undeformed state, are discussed. The first type of deformation may be considered to be produced by the following three successive simpler deformations: (i) a uniform simple extension, (ii) a uniform inflation of the tube, in which its length remains constant, and (iii) a uniform simple torsion, in which planes perpendicular to the axis of the tube are rotated in their own plane through an angle proportional to their distance from one end of the tube. Certain special cases of this deformation are considered in greater detail employing a simple stored-energy function of the form lf=C'1(/1-3)+C2(/2-3), where Cx and C2 are physical constants for the material and Ix and /2 are the strain invariants. The second type of deformation considered is that in which the simpler deformations (i) and (ii) mentioned above are followed successively by simple shears about the axis of the tube and parallel to it. The forces which must be applied are calculated for the simple form of stored-energy function given above. Finally, the simultaneous simple flexure and uniform extension normal to the plane of flexure of a thick sheet is discussed, and a number of the results obtained in a previous paper (Rivlin 19496) are generalized.


Sign in / Sign up

Export Citation Format

Share Document